A Deterministic Monte Carlo Simulation Framework for Dam Safety Flow Control Assessment

Simulation has become more widely applied for analysis of dam safety flow control in recent years. Stochastic simulation has proven to be a useful tool that allows for easy estimation of the overall probability of dam overtopping failure. However, it is difficult to analyze “uncommon combi...

Full description

Bibliographic Details
Main Authors: Leanna M. King, Slobodan P. Simonovic
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/12/2/505
Description
Summary:Simulation has become more widely applied for analysis of dam safety flow control in recent years. Stochastic simulation has proven to be a useful tool that allows for easy estimation of the overall probability of dam overtopping failure. However, it is difficult to analyze “uncommon combinations of events” with a stochastic approach given current computing abilities, because (a) the likelihood of these combinations of events is small, and (b) there may not be enough simulated instances of these rare scenarios to determine their criticality. In this research, a Deterministic Monte Carlo approach is presented, which uses an exhaustive list of possible combinations of events (scenarios) as a deterministic input. System dynamics simulation is used to model the dam system interactions so that low-level events within the system can be propagated through the model to determine high-level system outcomes. Monte Carlo iterations are performed for each input scenario. A case study is presented with results from a single example scenario to demonstrate how the simulation framework can be used to estimate the criticality parameters for each combination of events simulated. The approach can analyze these rare events in a thorough and systematic way, providing a better coverage of the possibility space as well as valuable insights into system vulnerabilities.
ISSN:2073-4441