The Lifetimes of Evaporating Sessile Droplets of Water Can Be Strongly Influenced by Thermal Effects

The effect of the thermal properties of the system on the lifetime of an evaporating sessile droplet of water is analysed using a fully coupled model which involves determining the temperature of the droplet, the substrate and the atmosphere. The evolutions, and hence the lifetimes, of droplets of w...

Full description

Bibliographic Details
Main Authors: Feargus G. H. Schofield, David Pritchard, Stephen K. Wilson, Khellil Sefiane
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/6/4/141
Description
Summary:The effect of the thermal properties of the system on the lifetime of an evaporating sessile droplet of water is analysed using a fully coupled model which involves determining the temperature of the droplet, the substrate and the atmosphere. The evolutions, and hence the lifetimes, of droplets of water evaporating in both of the extreme modes are calculated. In particular, it is shown how the lifetimes of droplets of water can be strongly influenced by thermal effects. Droplets with larger initial contact angles or on less conductive substrates generally have longer lifetimes than those with smaller initial contact angles or on more conductive substrates, and the physical mechanism by which the thermal properties of the system influence the evaporation can be understood in terms of the thermal anchoring between the droplet and the lower surface of the substrate.
ISSN:2311-5521