First study on molecular detection of hemopathogens in tabanid flies (Diptera: Tabanidae) and cattle in Southern Thailand

Background and Aim: Female tabanids play a key role in disease transmission as mechanical vectors for various hemopathogens, but only a limited number of studies have been conducted on them. This study aimed to investigate the occurrence of hemopathogens in tabanid flies compared to those found in n...

Full description

Bibliographic Details
Main Authors: Narin Sontigun, Worakan Boonhoh, Yotsapat Phetcharat, Tuempong Wongtawan
Format: Article
Language:English
Published: Veterinary World 2022-08-01
Series:Veterinary World
Subjects:
Online Access:http://www.veterinaryworld.org/Vol.15/August-2022/24.pdf
Description
Summary:Background and Aim: Female tabanids play a key role in disease transmission as mechanical vectors for various hemopathogens, but only a limited number of studies have been conducted on them. This study aimed to investigate the occurrence of hemopathogens in tabanid flies compared to those found in nearby cattle hosts. Materials and Methods: Tabanids were collected using a Nzi trap for three consecutive days per month during the dry season (February–May 2021). Furthermore, blood samples were collected from 20 beef cattle (Bos taurus) raised in the same area where the flies were captured. Conventional polymerase chain reaction (PCR) was used to detect hemopathogenic DNA in flies and beef cattle. Results: In total, 279 female tabanids belonging to five species were collected: Tabanus megalops, Tabanus rubidus, Tabanus mesogaeus, Chrysops dispar, and Chrysops fuscomarginalis. Notably, T. megalops was the most abundant species, accounting for 89.2% of the flies collected (n = 249). PCR technique revealed that 76.6% of T. megalops carried at least one pathogen (Anaplasma, Ehrlichia, Babesia, or Theileria). In addition, all beef cattle had multiple hemopathogenic infections (Anaplasma marginale, Ehrlichia spp., Babesia bigemina, Babesia bovis, and Theileria spp.). Conclusion: Although T. megalops could carry many hemopathogens, it might not be an important vector due to the limited number of flies and parasitic load. Furthermore, T. megalops could be utilized to monitor the presence of hemopathogens in the study area, but not the disease occurrence in the individual host species. Knowing the presence of hemopathogens in flies could help manage the disease in this area.
ISSN:0972-8988
2231-0916