Lifetime Models with Nonconstant Shape Parameters

In its standard form, a lifetime regression model usually assumes that the time until an event occurs has a constant shape parameter and a scale parameter that is a function of covariates. In this paper we consider lifetime models with shape parameter dependent on a vector of covariates. Two specia...

Full description

Bibliographic Details
Main Authors: Josmar Mazucheli, Francisco Louzada-Neto, Jorge Alberto Achcar
Format: Article
Language:English
Published: Instituto Nacional de Estatística | Statistics Portugal 2003-11-01
Series:Revstat Statistical Journal
Subjects:
Online Access:https://revstat.ine.pt/index.php/REVSTAT/article/view/4
_version_ 1818513316787519488
author Josmar Mazucheli
Francisco Louzada-Neto
Jorge Alberto Achcar
author_facet Josmar Mazucheli
Francisco Louzada-Neto
Jorge Alberto Achcar
author_sort Josmar Mazucheli
collection DOAJ
description In its standard form, a lifetime regression model usually assumes that the time until an event occurs has a constant shape parameter and a scale parameter that is a function of covariates. In this paper we consider lifetime models with shape parameter dependent on a vector of covariates. Two special models are considered, the Weibull model and a mixture model incorporating long-term survivors, when we consider that the incidence probability is also dependent on covariates. Classical parameters estimation approach is considered on two real data sets.
first_indexed 2024-12-10T23:59:39Z
format Article
id doaj.art-c775a0e2706f4daeb78377ff36518837
institution Directory Open Access Journal
issn 1645-6726
2183-0371
language English
last_indexed 2024-12-10T23:59:39Z
publishDate 2003-11-01
publisher Instituto Nacional de Estatística | Statistics Portugal
record_format Article
series Revstat Statistical Journal
spelling doaj.art-c775a0e2706f4daeb78377ff365188372022-12-22T01:28:31ZengInstituto Nacional de Estatística | Statistics PortugalRevstat Statistical Journal1645-67262183-03712003-11-011110.57805/revstat.v1i1.4Lifetime Models with Nonconstant Shape ParametersJosmar Mazucheli 0Francisco Louzada-Neto 1Jorge Alberto Achcar 2Universidade Estadual de MaringáUniversidade Federal de São CarlosUniversidade Federal de São Carlos In its standard form, a lifetime regression model usually assumes that the time until an event occurs has a constant shape parameter and a scale parameter that is a function of covariates. In this paper we consider lifetime models with shape parameter dependent on a vector of covariates. Two special models are considered, the Weibull model and a mixture model incorporating long-term survivors, when we consider that the incidence probability is also dependent on covariates. Classical parameters estimation approach is considered on two real data sets. https://revstat.ine.pt/index.php/REVSTAT/article/view/4accelerated life testsbootstraplong-term survivorsnonconstant shape parameterWeibull distribution
spellingShingle Josmar Mazucheli
Francisco Louzada-Neto
Jorge Alberto Achcar
Lifetime Models with Nonconstant Shape Parameters
Revstat Statistical Journal
accelerated life tests
bootstrap
long-term survivors
nonconstant shape parameter
Weibull distribution
title Lifetime Models with Nonconstant Shape Parameters
title_full Lifetime Models with Nonconstant Shape Parameters
title_fullStr Lifetime Models with Nonconstant Shape Parameters
title_full_unstemmed Lifetime Models with Nonconstant Shape Parameters
title_short Lifetime Models with Nonconstant Shape Parameters
title_sort lifetime models with nonconstant shape parameters
topic accelerated life tests
bootstrap
long-term survivors
nonconstant shape parameter
Weibull distribution
url https://revstat.ine.pt/index.php/REVSTAT/article/view/4
work_keys_str_mv AT josmarmazucheli lifetimemodelswithnonconstantshapeparameters
AT franciscolouzadaneto lifetimemodelswithnonconstantshapeparameters
AT jorgealbertoachcar lifetimemodelswithnonconstantshapeparameters