Low-temperature nanoscale heat transport in a gadolinium iron garnet heterostructure probed by ultrafast x-ray diffraction

Time-resolved x-ray diffraction has been used to measure the low-temperature thermal transport properties of a Pt/Gd3Fe5O12//Gd3Ga5O12 metal/oxide heterostructure relevant to applications in spin caloritronics. A pulsed femtosecond optical signal produces a rapid temperature rise in the Pt layer, fo...

Full description

Bibliographic Details
Main Authors: Deepankar Sri Gyan, Danny Mannix, Dina Carbone, James L. Sumpter, Stephan Geprägs, Maxim Dietlein, Rudolf Gross, Andrius Jurgilaitis, Van-Thai Pham, Hélène Coudert-Alteirac, Jörgen Larsson, Daniel Haskel, Jörg Strempfer, Paul G. Evans
Format: Article
Language:English
Published: AIP Publishing LLC and ACA 2022-07-01
Series:Structural Dynamics
Online Access:http://dx.doi.org/10.1063/4.0000154
_version_ 1811206013421879296
author Deepankar Sri Gyan
Danny Mannix
Dina Carbone
James L. Sumpter
Stephan Geprägs
Maxim Dietlein
Rudolf Gross
Andrius Jurgilaitis
Van-Thai Pham
Hélène Coudert-Alteirac
Jörgen Larsson
Daniel Haskel
Jörg Strempfer
Paul G. Evans
author_facet Deepankar Sri Gyan
Danny Mannix
Dina Carbone
James L. Sumpter
Stephan Geprägs
Maxim Dietlein
Rudolf Gross
Andrius Jurgilaitis
Van-Thai Pham
Hélène Coudert-Alteirac
Jörgen Larsson
Daniel Haskel
Jörg Strempfer
Paul G. Evans
author_sort Deepankar Sri Gyan
collection DOAJ
description Time-resolved x-ray diffraction has been used to measure the low-temperature thermal transport properties of a Pt/Gd3Fe5O12//Gd3Ga5O12 metal/oxide heterostructure relevant to applications in spin caloritronics. A pulsed femtosecond optical signal produces a rapid temperature rise in the Pt layer, followed by heat transport into the Gd3Fe5O12 (GdIG) thin film and the Gd3Ga5O12 (GGG) substrate. The time dependence of x-ray diffraction from the GdIG layer was tracked using an accelerator-based femtosecond x-ray source. The ultrafast diffraction measurements probed the intensity of the GdIG (1 −1 2) x-ray reflection in a grazing-incidence x-ray diffraction geometry. The comparison of the variation of the diffracted x-ray intensity with a model including heat transport and the temperature dependence of the GdIG lattice parameter allows the thermal conductance of the Pt/GdIG and GdIG//GGG interfaces to be determined. Complementary synchrotron x-ray diffraction studies of the low-temperature thermal expansion properties of the GdIG layer provide a precise calibration of the temperature dependence of the GdIG lattice parameter. The interfacial thermal conductance of the Pt/GdIG and GdIG//GGG interfaces determined from the time-resolved diffraction study is of the same order of magnitude as previous reports for metal/oxide and epitaxial dielectric interfaces. The thermal parameters of the Pt/GdIG//GGG heterostructure will aid in the design and implementation of thermal transport devices and nanostructures.
first_indexed 2024-04-12T03:40:19Z
format Article
id doaj.art-c7857b780e874d75b0d83aadafab1829
institution Directory Open Access Journal
issn 2329-7778
language English
last_indexed 2024-04-12T03:40:19Z
publishDate 2022-07-01
publisher AIP Publishing LLC and ACA
record_format Article
series Structural Dynamics
spelling doaj.art-c7857b780e874d75b0d83aadafab18292022-12-22T03:49:18ZengAIP Publishing LLC and ACAStructural Dynamics2329-77782022-07-0194045101045101-1010.1063/4.0000154Low-temperature nanoscale heat transport in a gadolinium iron garnet heterostructure probed by ultrafast x-ray diffractionDeepankar Sri Gyan0Danny Mannix1Dina Carbone2James L. Sumpter3Stephan Geprägs4Maxim Dietlein5Rudolf Gross6Andrius Jurgilaitis7Van-Thai Pham8Hélène Coudert-Alteirac9Jörgen Larsson10Daniel Haskel11Jörg Strempfer12Paul G. Evans13 University of Wisconsin-Madison, Madison, Wisconsin 53706, USA Université Grenoble Alpes, CNRS, Institut Néel, 38042 Grenoble, France MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden University of Wisconsin-Madison, Madison, Wisconsin 53706, USA Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA University of Wisconsin-Madison, Madison, Wisconsin 53706, USATime-resolved x-ray diffraction has been used to measure the low-temperature thermal transport properties of a Pt/Gd3Fe5O12//Gd3Ga5O12 metal/oxide heterostructure relevant to applications in spin caloritronics. A pulsed femtosecond optical signal produces a rapid temperature rise in the Pt layer, followed by heat transport into the Gd3Fe5O12 (GdIG) thin film and the Gd3Ga5O12 (GGG) substrate. The time dependence of x-ray diffraction from the GdIG layer was tracked using an accelerator-based femtosecond x-ray source. The ultrafast diffraction measurements probed the intensity of the GdIG (1 −1 2) x-ray reflection in a grazing-incidence x-ray diffraction geometry. The comparison of the variation of the diffracted x-ray intensity with a model including heat transport and the temperature dependence of the GdIG lattice parameter allows the thermal conductance of the Pt/GdIG and GdIG//GGG interfaces to be determined. Complementary synchrotron x-ray diffraction studies of the low-temperature thermal expansion properties of the GdIG layer provide a precise calibration of the temperature dependence of the GdIG lattice parameter. The interfacial thermal conductance of the Pt/GdIG and GdIG//GGG interfaces determined from the time-resolved diffraction study is of the same order of magnitude as previous reports for metal/oxide and epitaxial dielectric interfaces. The thermal parameters of the Pt/GdIG//GGG heterostructure will aid in the design and implementation of thermal transport devices and nanostructures.http://dx.doi.org/10.1063/4.0000154
spellingShingle Deepankar Sri Gyan
Danny Mannix
Dina Carbone
James L. Sumpter
Stephan Geprägs
Maxim Dietlein
Rudolf Gross
Andrius Jurgilaitis
Van-Thai Pham
Hélène Coudert-Alteirac
Jörgen Larsson
Daniel Haskel
Jörg Strempfer
Paul G. Evans
Low-temperature nanoscale heat transport in a gadolinium iron garnet heterostructure probed by ultrafast x-ray diffraction
Structural Dynamics
title Low-temperature nanoscale heat transport in a gadolinium iron garnet heterostructure probed by ultrafast x-ray diffraction
title_full Low-temperature nanoscale heat transport in a gadolinium iron garnet heterostructure probed by ultrafast x-ray diffraction
title_fullStr Low-temperature nanoscale heat transport in a gadolinium iron garnet heterostructure probed by ultrafast x-ray diffraction
title_full_unstemmed Low-temperature nanoscale heat transport in a gadolinium iron garnet heterostructure probed by ultrafast x-ray diffraction
title_short Low-temperature nanoscale heat transport in a gadolinium iron garnet heterostructure probed by ultrafast x-ray diffraction
title_sort low temperature nanoscale heat transport in a gadolinium iron garnet heterostructure probed by ultrafast x ray diffraction
url http://dx.doi.org/10.1063/4.0000154
work_keys_str_mv AT deepankarsrigyan lowtemperaturenanoscaleheattransportinagadoliniumirongarnetheterostructureprobedbyultrafastxraydiffraction
AT dannymannix lowtemperaturenanoscaleheattransportinagadoliniumirongarnetheterostructureprobedbyultrafastxraydiffraction
AT dinacarbone lowtemperaturenanoscaleheattransportinagadoliniumirongarnetheterostructureprobedbyultrafastxraydiffraction
AT jameslsumpter lowtemperaturenanoscaleheattransportinagadoliniumirongarnetheterostructureprobedbyultrafastxraydiffraction
AT stephangeprags lowtemperaturenanoscaleheattransportinagadoliniumirongarnetheterostructureprobedbyultrafastxraydiffraction
AT maximdietlein lowtemperaturenanoscaleheattransportinagadoliniumirongarnetheterostructureprobedbyultrafastxraydiffraction
AT rudolfgross lowtemperaturenanoscaleheattransportinagadoliniumirongarnetheterostructureprobedbyultrafastxraydiffraction
AT andriusjurgilaitis lowtemperaturenanoscaleheattransportinagadoliniumirongarnetheterostructureprobedbyultrafastxraydiffraction
AT vanthaipham lowtemperaturenanoscaleheattransportinagadoliniumirongarnetheterostructureprobedbyultrafastxraydiffraction
AT helenecoudertalteirac lowtemperaturenanoscaleheattransportinagadoliniumirongarnetheterostructureprobedbyultrafastxraydiffraction
AT jorgenlarsson lowtemperaturenanoscaleheattransportinagadoliniumirongarnetheterostructureprobedbyultrafastxraydiffraction
AT danielhaskel lowtemperaturenanoscaleheattransportinagadoliniumirongarnetheterostructureprobedbyultrafastxraydiffraction
AT jorgstrempfer lowtemperaturenanoscaleheattransportinagadoliniumirongarnetheterostructureprobedbyultrafastxraydiffraction
AT paulgevans lowtemperaturenanoscaleheattransportinagadoliniumirongarnetheterostructureprobedbyultrafastxraydiffraction