Summary: | The attraction of games comes from the player being able to have fun in games. Gambling games that are based on the Variable-Ratio schedule in Skinner’s experiment are the most typical addictive games. It is necessary to clarify the reason why typical gambling games are simple but addictive. Also, the Multiarmed Bandit game is a typical test for Skinner Box design and is most popular in the gambling house, which is a good example to analyze. This article mainly focuses on expanding on the idea of the motion in mind model in the scene of Multiarmed Bandit games, quantifying the player’s psychological inclination by simulation experimental data. By relating with the quantification of player satisfaction and play comfort, the expectation’s feeling is discussed from the energy perspective. Two different energies are proposed: player-side (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math></inline-formula>) and game-side energy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>i</mi></msub></semantics></math></inline-formula>). This provides the difference of player-side (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math></inline-formula>) and game-side energy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>i</mi></msub></semantics></math></inline-formula>), denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>d</mi></msub></semantics></math></inline-formula> to show the player’s psychological gap. Ten settings of mass bandit were simulated. It was found that the setting of the best player confidence (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>r</mi></msub></semantics></math></inline-formula>) and entry difficulty (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>i</mi></msub></semantics></math></inline-formula>) can balance player expectation. The simulation results show that when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>=</mo><mn>0.3</mn><mo>,</mo><mn>0.7</mn></mrow></semantics></math></inline-formula>, the player has the biggest psychological gap, which expresses that player will be motivated by not being reconciled. Moreover, addiction is likely to occur when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>∈</mo><mo>[</mo><mn>0.5</mn><mo>,</mo><mn>0.7</mn><mo>]</mo></mrow></semantics></math></inline-formula>. Such an approach can also help the developers and educators increase edutainment games’ efficiency and make the game more attractive.
|