Faster Deep Inertial Pose Estimation with Six Inertial Sensors
We propose a novel pose estimation method that can predict the full-body pose from six inertial sensors worn by the user. This method solves problems encountered in vision, such as occlusion or expensive deployment. We address several complex challenges. First, we use the SRU network structure inste...
Päätekijät: | Di Xia, Yeqing Zhu, Heng Zhang |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
MDPI AG
2022-09-01
|
Sarja: | Sensors |
Aiheet: | |
Linkit: | https://www.mdpi.com/1424-8220/22/19/7144 |
Samankaltaisia teoksia
-
Foot Pose Estimation Using an Inertial Sensor Unit and Two Distance Sensors
Tekijä: Pham Duy Duong, et al.
Julkaistu: (2015-07-01) -
Leg Joint Angle Estimation From a Single Inertial Sensor During Variety of Walking Motions: A Deep Learning Approach
Tekijä: Tsige Tadesse Alemayoh, et al.
Julkaistu: (2023-01-01) -
Magnetometer Robust Deep Human Pose Regression With Uncertainty Prediction Using Sparse Body Worn Magnetic Inertial Measurement Units
Tekijä: Hammad Tanveer Butt, et al.
Julkaistu: (2021-01-01) -
Pose Estimation Based on Bidirectional Visual–Inertial Odometry with 3D LiDAR (BV-LIO)
Tekijä: Gang Peng, et al.
Julkaistu: (2024-08-01) -
Plane-Aided Visual-Inertial Odometry for 6-DOF Pose Estimation of a Robotic Navigation Aid
Tekijä: He Zhang, et al.
Julkaistu: (2020-01-01)