Deep genome-wide measurement of meiotic gene conversion using tetrad analysis in Arabidopsis thaliana.
Gene conversion, the non-reciprocal exchange of genetic information, is one of the potential products of meiotic recombination. It can shape genome structure by acting on repetitive DNA elements, influence allele frequencies at the population level, and is known to be implicated in human disease. Bu...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2012-01-01
|
Series: | PLoS Genetics |
Online Access: | http://europepmc.org/articles/PMC3464199?pdf=render |
_version_ | 1818439202870657024 |
---|---|
author | Yujin Sun Jonathan H Ambrose Brena S Haughey Tyler D Webster Sarah N Pierrie Daniela F Muñoz Emily C Wellman Shalom Cherian Scott M Lewis Luke E Berchowitz Gregory P Copenhaver |
author_facet | Yujin Sun Jonathan H Ambrose Brena S Haughey Tyler D Webster Sarah N Pierrie Daniela F Muñoz Emily C Wellman Shalom Cherian Scott M Lewis Luke E Berchowitz Gregory P Copenhaver |
author_sort | Yujin Sun |
collection | DOAJ |
description | Gene conversion, the non-reciprocal exchange of genetic information, is one of the potential products of meiotic recombination. It can shape genome structure by acting on repetitive DNA elements, influence allele frequencies at the population level, and is known to be implicated in human disease. But gene conversion is hard to detect directly except in organisms, like fungi, that group their gametes following meiosis. We have developed a novel visual assay that enables us to detect gene conversion events directly in the gametes of the flowering plant Arabidopsis thaliana. Using this assay we measured gene conversion events across the genome of more than one million meioses and determined that the genome-wide average frequency is 3.5×10(-4) conversions per locus per meiosis. We also detected significant locus-to-locus variation in conversion frequency but no intra-locus variation. Significantly, we found one locus on the short arm of chromosome 4 that experienced 3-fold to 6-fold more gene conversions than the other loci tested. Finally, we demonstrated that we could modulate conversion frequency by varying experimental conditions. |
first_indexed | 2024-12-14T17:52:43Z |
format | Article |
id | doaj.art-c78fe35aad4f4d4790963c13b68c5e88 |
institution | Directory Open Access Journal |
issn | 1553-7390 1553-7404 |
language | English |
last_indexed | 2024-12-14T17:52:43Z |
publishDate | 2012-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS Genetics |
spelling | doaj.art-c78fe35aad4f4d4790963c13b68c5e882022-12-21T22:52:37ZengPublic Library of Science (PLoS)PLoS Genetics1553-73901553-74042012-01-01810e100296810.1371/journal.pgen.1002968Deep genome-wide measurement of meiotic gene conversion using tetrad analysis in Arabidopsis thaliana.Yujin SunJonathan H AmbroseBrena S HaugheyTyler D WebsterSarah N PierrieDaniela F MuñozEmily C WellmanShalom CherianScott M LewisLuke E BerchowitzGregory P CopenhaverGene conversion, the non-reciprocal exchange of genetic information, is one of the potential products of meiotic recombination. It can shape genome structure by acting on repetitive DNA elements, influence allele frequencies at the population level, and is known to be implicated in human disease. But gene conversion is hard to detect directly except in organisms, like fungi, that group their gametes following meiosis. We have developed a novel visual assay that enables us to detect gene conversion events directly in the gametes of the flowering plant Arabidopsis thaliana. Using this assay we measured gene conversion events across the genome of more than one million meioses and determined that the genome-wide average frequency is 3.5×10(-4) conversions per locus per meiosis. We also detected significant locus-to-locus variation in conversion frequency but no intra-locus variation. Significantly, we found one locus on the short arm of chromosome 4 that experienced 3-fold to 6-fold more gene conversions than the other loci tested. Finally, we demonstrated that we could modulate conversion frequency by varying experimental conditions.http://europepmc.org/articles/PMC3464199?pdf=render |
spellingShingle | Yujin Sun Jonathan H Ambrose Brena S Haughey Tyler D Webster Sarah N Pierrie Daniela F Muñoz Emily C Wellman Shalom Cherian Scott M Lewis Luke E Berchowitz Gregory P Copenhaver Deep genome-wide measurement of meiotic gene conversion using tetrad analysis in Arabidopsis thaliana. PLoS Genetics |
title | Deep genome-wide measurement of meiotic gene conversion using tetrad analysis in Arabidopsis thaliana. |
title_full | Deep genome-wide measurement of meiotic gene conversion using tetrad analysis in Arabidopsis thaliana. |
title_fullStr | Deep genome-wide measurement of meiotic gene conversion using tetrad analysis in Arabidopsis thaliana. |
title_full_unstemmed | Deep genome-wide measurement of meiotic gene conversion using tetrad analysis in Arabidopsis thaliana. |
title_short | Deep genome-wide measurement of meiotic gene conversion using tetrad analysis in Arabidopsis thaliana. |
title_sort | deep genome wide measurement of meiotic gene conversion using tetrad analysis in arabidopsis thaliana |
url | http://europepmc.org/articles/PMC3464199?pdf=render |
work_keys_str_mv | AT yujinsun deepgenomewidemeasurementofmeioticgeneconversionusingtetradanalysisinarabidopsisthaliana AT jonathanhambrose deepgenomewidemeasurementofmeioticgeneconversionusingtetradanalysisinarabidopsisthaliana AT brenashaughey deepgenomewidemeasurementofmeioticgeneconversionusingtetradanalysisinarabidopsisthaliana AT tylerdwebster deepgenomewidemeasurementofmeioticgeneconversionusingtetradanalysisinarabidopsisthaliana AT sarahnpierrie deepgenomewidemeasurementofmeioticgeneconversionusingtetradanalysisinarabidopsisthaliana AT danielafmunoz deepgenomewidemeasurementofmeioticgeneconversionusingtetradanalysisinarabidopsisthaliana AT emilycwellman deepgenomewidemeasurementofmeioticgeneconversionusingtetradanalysisinarabidopsisthaliana AT shalomcherian deepgenomewidemeasurementofmeioticgeneconversionusingtetradanalysisinarabidopsisthaliana AT scottmlewis deepgenomewidemeasurementofmeioticgeneconversionusingtetradanalysisinarabidopsisthaliana AT lukeeberchowitz deepgenomewidemeasurementofmeioticgeneconversionusingtetradanalysisinarabidopsisthaliana AT gregorypcopenhaver deepgenomewidemeasurementofmeioticgeneconversionusingtetradanalysisinarabidopsisthaliana |