Synthesis of silver nanoparticle decorated multiwalled carbon nanotubes-graphene mixture and its heat transfer studies in nanofluid

The present study describes a novel synthesis procedure for a hybrid nanostructure consisting of multiwalled carbon nanotubes (MWNT), hydrogen exfoliated graphene (HEG) and silver nanoparticles. Moreover, synthesis of nanofluids using the above hybrid material and their heat transfer properties are...

Full description

Bibliographic Details
Main Authors: Tessy Theres Baby, Ramaprabhu Sundara
Format: Article
Language:English
Published: AIP Publishing LLC 2013-01-01
Series:AIP Advances
Online Access:http://link.aip.org/link/doi/10.1063/1.4789404
Description
Summary:The present study describes a novel synthesis procedure for a hybrid nanostructure consisting of multiwalled carbon nanotubes (MWNT), hydrogen exfoliated graphene (HEG) and silver nanoparticles. Moreover, synthesis of nanofluids using the above hybrid material and their heat transfer properties are discussed. The hybrid structure of MWNT and HEG (MWNT-HEG) has been synthesized by a simple mixing of MWNT and graphite oxide (GO) followed by exfoliation of this mixture in hydrogen atmosphere. The sample has been characterized with different experimental techniques. After surface functionalization, this hybrid material is decorated with silver nanoparticles (Ag/(MWNT-HEG)) and dispersed in ethylene glycol (EG) without any surfactant. The thermal conductivity and convective heat transfer properties are measured for different volume fractions. An enhancement of ∼8% in thermal conductivity is obtained for a volume fraction of 0.04% at 25°C. The convective heat transfer coefficient of these nanofluids is determined using an in-house fabricated setup. The enhancement in heat transfer coefficient is about 570% for 0.005% volume fraction at the entrance of the pipe for Re = 250.
ISSN:2158-3226