DIAPH3 condensates formed by liquid-liquid phase separation act as a regulatory hub for stress-induced actin cytoskeleton remodeling

Summary: Membraneless condensates, such as stress granules (SGs) and processing bodies (P-bodies), have attracted wide attention due to their unique feature of rapid response to stress without first requiring nuclear feedback. In this study, we identify diaphanous-related formin 3 (DIAPH3), an actin...

Full description

Bibliographic Details
Main Authors: Ke Zhang, Miaodan Huang, Ang Li, Jing Wen, Lingli Yan, Yunhao Li, Liman Guo, Kumaran Satyanarayanan Senthil, Yangyang Zhou, Guobing Chen, Yong Liu, Xiaofei Zhang, Xiaoli Yao, Dajiang Qin, Huanxing Su
Format: Article
Language:English
Published: Elsevier 2023-01-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124722018903
Description
Summary:Summary: Membraneless condensates, such as stress granules (SGs) and processing bodies (P-bodies), have attracted wide attention due to their unique feature of rapid response to stress without first requiring nuclear feedback. In this study, we identify diaphanous-related formin 3 (DIAPH3), an actin nucleator, as a scaffold protein to initiate liquid-liquid phase separation (LLPS) and form abundant cytosolic phase-separated DIAPH3 granules (D-granules) in mammalian cells such as HeLa, HEK293, and fibroblasts under various stress conditions. Neither mRNAs nor known stress-associated condensate markers, such as G3BP1, G3BP2, and TIA1 for SGs and DCP1A for P-bodies, are detected in D-granules. Using overexpression and knockout of DIAPH3, pharmacological interventions, and optogenetics, we further demonstrate that stress-induced D-granules spatially sequester DIAPH3 within the condensation to inhibit the assembly of actin filaments in filopodia. This study reveals that D-granules formed by LLPS act as a regulatory hub for actin cytoskeletal remodeling in response to stress.
ISSN:2211-1247