Non-destructive determination of the biotite crystal chemistry using Raman spectroscopy: how far we can go?

<p>Raman spectroscopy combined with electron microprobe analysis as well as Mössbauer spectroscopy was applied to a series of 18 samples along the phlogopite (KMg<span class="inline-formula"><sub>3</sub></span>AlSi<span class="inline-formula">&...

Full description

Bibliographic Details
Main Authors: S. Aspiotis, J. Schlüter, G. J. Redhammer, B. Mihailova
Format: Article
Language:English
Published: Copernicus Publications 2022-12-01
Series:European Journal of Mineralogy
Online Access:https://ejm.copernicus.org/articles/34/573/2022/ejm-34-573-2022.pdf
Description
Summary:<p>Raman spectroscopy combined with electron microprobe analysis as well as Mössbauer spectroscopy was applied to a series of 18 samples along the phlogopite (KMg<span class="inline-formula"><sub>3</sub></span>AlSi<span class="inline-formula"><sub>3</sub></span>O<span class="inline-formula"><sub>10</sub></span>(OH)<span class="inline-formula"><sub>2</sub></span>)–annite (KFe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mrow><mn mathvariant="normal">2</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="12pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="5b2612ce1172c0a300921cfd96af72d6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-34-573-2022-ie00001.svg" width="12pt" height="17pt" src="ejm-34-573-2022-ie00001.png"/></svg:svg></span></span>AlSi<span class="inline-formula"><sub>3</sub></span>O<span class="inline-formula"><sub>10</sub></span>(OH)<span class="inline-formula"><sub>2</sub></span>) join to establish a truly non-destructive method for crystallochemical characterization of biotite (A<span class="inline-formula"><sub>1</sub></span>M<span class="inline-formula"><sub>3</sub></span>T<span class="inline-formula"><sub>4</sub></span>O<span class="inline-formula"><sub>10</sub></span>X<span class="inline-formula"><sub>2</sub></span>, M<span class="inline-formula"><sub>3</sub></span> <span class="inline-formula">=</span> M1M2M2). The Raman scattering arising from the framework (15–1215 cm<span class="inline-formula"><sup>−1</sup></span>) and OH-stretching phonon modes (3000–3900 cm<span class="inline-formula"><sup>−1</sup></span>) was used to build up correlation trends between the Raman spectral features and crystal chemistry of biotite. We show that (a) the contents of <span class="inline-formula"><sup>M</sup></span>Mg, <span class="inline-formula"><sup>M</sup></span>Fe<span class="inline-formula"><sup>2+</sup></span>, and <span class="inline-formula"><sup>M</sup></span>Fe<span class="inline-formula"><sup>3+</sup></span> contents can be quantified with a relative error of <span class="inline-formula">∼</span> 6 %, <span class="inline-formula">∼</span> 6 %, and <span class="inline-formula">∼</span> 8 %, respectively, by combining the integrated intensities of the OH-stretching peaks assigned to various M1M2M2 local configurations with the wavenumber of the MO<span class="inline-formula"><sub>6</sub></span> vibrational mode near 190 cm<span class="inline-formula"><sup>−1</sup></span>; (b) the <span class="inline-formula"><sup>M</sup></span>Ti content can be estimated from the peak position and FWHM (full width at half maximum) of the second strongest TO<span class="inline-formula"><sub>4</sub></span>-ring mode at <span class="inline-formula">∼</span> 680 cm<span class="inline-formula"><sup>−1</sup></span>, with a precision of 22 %; (c) the content of <span class="inline-formula"><sup>T</sup></span>Si can be estimated from the position of the second peak related to TO<span class="inline-formula"><sub>4</sub></span>-ring vibrations near 650 cm<span class="inline-formula"><sup>−1</sup></span>; (d) for phlogopite the <span class="inline-formula"><sup>T</sup></span>Al content can indirectly be calculated by knowing the amount of <span class="inline-formula"><sup>T</sup></span>Si, whereas for annite it is hindered by the plausible presence of <span class="inline-formula"><sup>T</sup></span>Fe<span class="inline-formula"><sup>3+</sup></span>; (e) the <span class="inline-formula"><sup>A</sup></span>K content can be quantified by the position of the peak generated by T-O<span class="inline-formula"><sub>b</sub></span>-T bond-stretching-and-bending vibration at <span class="inline-formula">∼</span> 730 cm<span class="inline-formula"><sup>−1</sup></span>; and (f) interlayer-deficient biotites and F-rich phlogopite can be identified via their unique OH-stretching Raman peaks around 3570 cm<span class="inline-formula"><sup>−1</sup></span> and 3695 cm<span class="inline-formula"><sup>−1</sup></span>, respectively. Our results show a potential tool for non-destructive quantitative estimations of the major (Mg, Fe, Si, Al, K) and minor (Ti) elements of the crystal chemistry of the biotite mineral group by using a non-destructive technique such as Raman spectroscopy, although its sensitivity is generally lower than that of electron microprobe analysis and therefore cannot detect trace elements. This is fundamental within the framework of cultural heritage where samples cannot be powdered or disassembled.</p>
ISSN:0935-1221
1617-4011