The dual eigenvalue problems of the conformable fractional Sturm–Liouville problems

Abstract In this paper, we are concerned with the eigenvalue gap and eigenvalue ratio of the Dirichlet conformable fractional Sturm–Liouville problems. We show that this kind of differential equation satisfies the Sturm–Liouville property by the Prüfer substitution. That is, the nth eigenfunction ha...

Full description

Bibliographic Details
Main Author: Yan-Hsiou Cheng
Format: Article
Language:English
Published: SpringerOpen 2021-09-01
Series:Boundary Value Problems
Subjects:
Online Access:https://doi.org/10.1186/s13661-021-01556-z
_version_ 1818587415071162368
author Yan-Hsiou Cheng
author_facet Yan-Hsiou Cheng
author_sort Yan-Hsiou Cheng
collection DOAJ
description Abstract In this paper, we are concerned with the eigenvalue gap and eigenvalue ratio of the Dirichlet conformable fractional Sturm–Liouville problems. We show that this kind of differential equation satisfies the Sturm–Liouville property by the Prüfer substitution. That is, the nth eigenfunction has n − 1 $n-1$ zero in ( 0 , π ) $( 0,\pi ) $ for n ∈ N $n\in \mathbb{N}$ . Then, using the homotopy argument, we find the minimum of the first eigenvalue gap under the class of single-well potential functions and the first eigenvalue ratio under the class of single-barrier density functions. The result of the eigenvalue gap is different from the classical Sturm–Liouville problem.
first_indexed 2024-12-16T09:08:29Z
format Article
id doaj.art-c7ab39c6aaef485abe6e1a0b33681049
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-12-16T09:08:29Z
publishDate 2021-09-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-c7ab39c6aaef485abe6e1a0b336810492022-12-21T22:37:02ZengSpringerOpenBoundary Value Problems1687-27702021-09-012021111010.1186/s13661-021-01556-zThe dual eigenvalue problems of the conformable fractional Sturm–Liouville problemsYan-Hsiou Cheng0Department of Mathematics and Information Education, National Taipei University of EducationAbstract In this paper, we are concerned with the eigenvalue gap and eigenvalue ratio of the Dirichlet conformable fractional Sturm–Liouville problems. We show that this kind of differential equation satisfies the Sturm–Liouville property by the Prüfer substitution. That is, the nth eigenfunction has n − 1 $n-1$ zero in ( 0 , π ) $( 0,\pi ) $ for n ∈ N $n\in \mathbb{N}$ . Then, using the homotopy argument, we find the minimum of the first eigenvalue gap under the class of single-well potential functions and the first eigenvalue ratio under the class of single-barrier density functions. The result of the eigenvalue gap is different from the classical Sturm–Liouville problem.https://doi.org/10.1186/s13661-021-01556-zConformable fractional derivativesSturm–Liouville problemEigenvalue gapEigenvalue ratio
spellingShingle Yan-Hsiou Cheng
The dual eigenvalue problems of the conformable fractional Sturm–Liouville problems
Boundary Value Problems
Conformable fractional derivatives
Sturm–Liouville problem
Eigenvalue gap
Eigenvalue ratio
title The dual eigenvalue problems of the conformable fractional Sturm–Liouville problems
title_full The dual eigenvalue problems of the conformable fractional Sturm–Liouville problems
title_fullStr The dual eigenvalue problems of the conformable fractional Sturm–Liouville problems
title_full_unstemmed The dual eigenvalue problems of the conformable fractional Sturm–Liouville problems
title_short The dual eigenvalue problems of the conformable fractional Sturm–Liouville problems
title_sort dual eigenvalue problems of the conformable fractional sturm liouville problems
topic Conformable fractional derivatives
Sturm–Liouville problem
Eigenvalue gap
Eigenvalue ratio
url https://doi.org/10.1186/s13661-021-01556-z
work_keys_str_mv AT yanhsioucheng thedualeigenvalueproblemsoftheconformablefractionalsturmliouvilleproblems
AT yanhsioucheng dualeigenvalueproblemsoftheconformablefractionalsturmliouvilleproblems