User Clustering for MIMO NOMA via Classifier Chains and Gradient-Boosting Decision Trees

In this article, we propose a data-driven approach to group users in a Non-Orthogonal Multiple Access (NOMA) MIMO setting. Specifically, we formulate user clustering as a multi-label classification problem and solve it by coupling a Classifier Chain (CC) with a Gradient Boosting Decision Tree (GBDT)...

Full description

Bibliographic Details
Main Authors: Chaouki Ben Issaid, Carles Anton-Haro, Xavier Mestre, Mohamed-Slim Alouini
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9261336/
_version_ 1818847059199918080
author Chaouki Ben Issaid
Carles Anton-Haro
Xavier Mestre
Mohamed-Slim Alouini
author_facet Chaouki Ben Issaid
Carles Anton-Haro
Xavier Mestre
Mohamed-Slim Alouini
author_sort Chaouki Ben Issaid
collection DOAJ
description In this article, we propose a data-driven approach to group users in a Non-Orthogonal Multiple Access (NOMA) MIMO setting. Specifically, we formulate user clustering as a multi-label classification problem and solve it by coupling a Classifier Chain (CC) with a Gradient Boosting Decision Tree (GBDT), namely, the LightGBM algorithm. The performance of the proposed CC-LightGBM scheme is assessed via numerical simulations. For benchmarking, we consider two classical adaptation learning schemes: Multi-Label k-Nearest Neighbours (ML-KNN) and Multi-Label Twin Support Vector Machines (ML-TSVM); as well as other naive approaches. Besides, we also compare the computational complexity of the proposed scheme with those of the aforementioned benchmarks.
first_indexed 2024-12-19T05:55:25Z
format Article
id doaj.art-c7ab43040e344f30ba15dc84f1cc0942
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-12-19T05:55:25Z
publishDate 2020-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-c7ab43040e344f30ba15dc84f1cc09422022-12-21T20:33:28ZengIEEEIEEE Access2169-35362020-01-01821141121142110.1109/ACCESS.2020.30384909261336User Clustering for MIMO NOMA via Classifier Chains and Gradient-Boosting Decision TreesChaouki Ben Issaid0https://orcid.org/0000-0002-4481-8168Carles Anton-Haro1https://orcid.org/0000-0002-5961-7692Xavier Mestre2Mohamed-Slim Alouini3https://orcid.org/0000-0003-4827-1793Centre for Wireless Communications (CWC), University of Oulu, Oulu, FinlandCentre Tecnològic de Telecomunicacions de Catalunya (CTTC/iCERCA), Parc Mediterrani Tecnologia (PMT), Castelldefels, SpainCentre Tecnològic de Telecomunicacions de Catalunya (CTTC/iCERCA), Parc Mediterrani Tecnologia (PMT), Castelldefels, SpainComputer, Electrical and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi ArabiaIn this article, we propose a data-driven approach to group users in a Non-Orthogonal Multiple Access (NOMA) MIMO setting. Specifically, we formulate user clustering as a multi-label classification problem and solve it by coupling a Classifier Chain (CC) with a Gradient Boosting Decision Tree (GBDT), namely, the LightGBM algorithm. The performance of the proposed CC-LightGBM scheme is assessed via numerical simulations. For benchmarking, we consider two classical adaptation learning schemes: Multi-Label k-Nearest Neighbours (ML-KNN) and Multi-Label Twin Support Vector Machines (ML-TSVM); as well as other naive approaches. Besides, we also compare the computational complexity of the proposed scheme with those of the aforementioned benchmarks.https://ieeexplore.ieee.org/document/9261336/NOMAmulti-label classificationclassifier chainsgradient-boosting decision treesuser clustering
spellingShingle Chaouki Ben Issaid
Carles Anton-Haro
Xavier Mestre
Mohamed-Slim Alouini
User Clustering for MIMO NOMA via Classifier Chains and Gradient-Boosting Decision Trees
IEEE Access
NOMA
multi-label classification
classifier chains
gradient-boosting decision trees
user clustering
title User Clustering for MIMO NOMA via Classifier Chains and Gradient-Boosting Decision Trees
title_full User Clustering for MIMO NOMA via Classifier Chains and Gradient-Boosting Decision Trees
title_fullStr User Clustering for MIMO NOMA via Classifier Chains and Gradient-Boosting Decision Trees
title_full_unstemmed User Clustering for MIMO NOMA via Classifier Chains and Gradient-Boosting Decision Trees
title_short User Clustering for MIMO NOMA via Classifier Chains and Gradient-Boosting Decision Trees
title_sort user clustering for mimo noma via classifier chains and gradient boosting decision trees
topic NOMA
multi-label classification
classifier chains
gradient-boosting decision trees
user clustering
url https://ieeexplore.ieee.org/document/9261336/
work_keys_str_mv AT chaoukibenissaid userclusteringformimonomaviaclassifierchainsandgradientboostingdecisiontrees
AT carlesantonharo userclusteringformimonomaviaclassifierchainsandgradientboostingdecisiontrees
AT xaviermestre userclusteringformimonomaviaclassifierchainsandgradientboostingdecisiontrees
AT mohamedslimalouini userclusteringformimonomaviaclassifierchainsandgradientboostingdecisiontrees