Deviation from Slow-Roll Regime in the EGB Inflationary Models with <i>r</i> ∼ <inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="bold-italic">N</mi><mi mathvariant="bold-italic">e</mi><mrow><mo mathvariant="bold">−</mo><mn mathvariant="bold">1</mn></mrow></msubsup></mrow></semantics></math></inline-formula>
We consider Einstein–Gauss–Bonnet (EGB) inflationary models using the effective potential approach. We present evolution equations in the slow-roll regime using the effective potential and the tensor-to-scalar ratio. The choice of the effective potential is related to an expression of the spectral i...
Main Author: | Ekaterina O. Pozdeeva |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-06-01
|
Series: | Universe |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-1997/7/6/181 |
Similar Items
-
The Connection between Der(<inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="bold">U</mi><mi mathvariant="bold">q</mi><mo mathvariant="bold">+</mo></msubsup><mrow><mo mathvariant="bold">(</mo><mi mathvariant="bold">g</mi><mo mathvariant="bold">)</mo></mrow></mrow></semantics></math></inline-formula>) and Der(<inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="bold">U</mi><mrow><mi mathvariant="bold">r</mi><mo mathvariant="bold">,</mo><mi mathvariant="bold">s</mi></mrow><mo mathvariant="bold">+</mo></msubsup><mrow><mo mathvariant="bold">(</mo><mi mathvariant="bold">g</mi><mo mathvariant="bold">)</mo></mrow></mrow></semantics></math></inline-formula>)
by: Yongyue Zhong, et al.
Published: (2024-08-01) -
Energy Transfer in the <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi mathvariant="bold-italic">C</mi><mi mathvariant="bold-italic">a</mi><mi mathvariant="bold-italic">S</mi><mi mathvariant="bold-italic">O</mi></mrow><mrow><mn mathvariant="bold">4</mn></mrow></msub><mo mathvariant="bold">−</mo><mrow><mi mathvariant="bold-italic">D</mi><mi mathvariant="bold-italic">y</mi></mrow></mrow></semantics></math></inline-formula> Thermoluminescent Dosimeter from the Excited State of the <inline-formula><math display="inline"><semantics><mrow><msubsup><mrow><mi mathvariant="bold-italic">S</mi><mi mathvariant="bold-italic">O</mi></mrow><mrow><mn mathvariant="bold">4</mn></mrow><mrow><mn mathvariant="bold">2</mn><mo mathvariant="bold">−</mo></mrow></msubsup></mrow></semantics></math></inline-formula> Anionic Complex to the Impurities
by: Turlybek N. Nurakhmetov, et al.
Published: (2023-11-01) -
Newton’s Iteration Method for Solving the Nonlinear Matrix Equation <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">X</mi><mo mathvariant="bold">+</mo><msubsup><mo mathvariant="bold">∑</mo><mrow><mi mathvariant="bold-italic">i</mi><mo mathvariant="bold">=</mo><mn mathvariant="bold">1</mn></mrow><mi mathvariant="bold-italic">m</mi></msubsup><msubsup><mi mathvariant="bold-italic">A</mi><mrow><mi mathvariant="bold-italic">i</mi></mrow><mo mathvariant="bold">*</mo></msubsup><msup><mi mathvariant="bold-italic">X</mi><mrow><mo mathvariant="bold">−</mo><mn mathvariant="bold">1</mn></mrow></msup><msub><mi mathvariant="bold-italic">A</mi><mi mathvariant="bold-italic">i</mi></msub><mo mathvariant="bold">=</mo><mi mathvariant="bold-italic">Q</mi></mrow></semantics></math></inline-formula>
by: Chang-Zhou Li, et al.
Published: (2023-03-01) -
Bounds on the Rate of Convergence for <inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="bold-italic">M</mi><mi mathvariant="bold-italic">t</mi><mi mathvariant="bold-italic">X</mi></msubsup></mrow></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="bold-italic">M</mi><mi mathvariant="bold-italic">t</mi><mi mathvariant="bold-italic">X</mi></msubsup></mrow></semantics></math></inline-formula>/1 Queueing Models
by: Alexander Zeifman, et al.
Published: (2021-07-01) -
Approximation for the Ratios of the Confluent Hypergeometric Function <inline-formula><math display="inline"><semantics><mrow><msubsup><mo mathvariant="bold">Φ</mo><mi mathvariant="bold-italic">D</mi><mrow><mo mathvariant="bold">(</mo><mi mathvariant="bold-italic">N</mi><mo mathvariant="bold">)</mo></mrow></msubsup></mrow></semantics></math></inline-formula> by the Branched Continued Fractions
by: Tamara Antonova, et al.
Published: (2022-08-01)