Obtaining high degree of circular polarization at x-ray free electron lasers via a reverse undulator taper
Baseline design of a typical x-ray free electron laser (FEL) undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at x-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade, one...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2013-11-01
|
Series: | Physical Review Special Topics. Accelerators and Beams |
Online Access: | http://doi.org/10.1103/PhysRevSTAB.16.110702 |
_version_ | 1818933178178469888 |
---|---|
author | E. A. Schneidmiller M. V. Yurkov |
author_facet | E. A. Schneidmiller M. V. Yurkov |
author_sort | E. A. Schneidmiller |
collection | DOAJ |
description | Baseline design of a typical x-ray free electron laser (FEL) undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at x-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade, one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress the powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of a nontapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering the SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft x-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e., it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate. It can be used at different x-ray FEL facilities, in particular at Linac Coherent Light Source after installation of the helical afterburner in the near future. |
first_indexed | 2024-12-20T04:44:15Z |
format | Article |
id | doaj.art-c8088b07be434a8cb59eb7c7b0ecdbf3 |
institution | Directory Open Access Journal |
issn | 1098-4402 |
language | English |
last_indexed | 2024-12-20T04:44:15Z |
publishDate | 2013-11-01 |
publisher | American Physical Society |
record_format | Article |
series | Physical Review Special Topics. Accelerators and Beams |
spelling | doaj.art-c8088b07be434a8cb59eb7c7b0ecdbf32022-12-21T19:53:03ZengAmerican Physical SocietyPhysical Review Special Topics. Accelerators and Beams1098-44022013-11-01161111070210.1103/PhysRevSTAB.16.110702Obtaining high degree of circular polarization at x-ray free electron lasers via a reverse undulator taperE. A. SchneidmillerM. V. YurkovBaseline design of a typical x-ray free electron laser (FEL) undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at x-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade, one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress the powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of a nontapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering the SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft x-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e., it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate. It can be used at different x-ray FEL facilities, in particular at Linac Coherent Light Source after installation of the helical afterburner in the near future.http://doi.org/10.1103/PhysRevSTAB.16.110702 |
spellingShingle | E. A. Schneidmiller M. V. Yurkov Obtaining high degree of circular polarization at x-ray free electron lasers via a reverse undulator taper Physical Review Special Topics. Accelerators and Beams |
title | Obtaining high degree of circular polarization at x-ray free electron lasers via a reverse undulator taper |
title_full | Obtaining high degree of circular polarization at x-ray free electron lasers via a reverse undulator taper |
title_fullStr | Obtaining high degree of circular polarization at x-ray free electron lasers via a reverse undulator taper |
title_full_unstemmed | Obtaining high degree of circular polarization at x-ray free electron lasers via a reverse undulator taper |
title_short | Obtaining high degree of circular polarization at x-ray free electron lasers via a reverse undulator taper |
title_sort | obtaining high degree of circular polarization at x ray free electron lasers via a reverse undulator taper |
url | http://doi.org/10.1103/PhysRevSTAB.16.110702 |
work_keys_str_mv | AT easchneidmiller obtaininghighdegreeofcircularpolarizationatxrayfreeelectronlasersviaareverseundulatortaper AT mvyurkov obtaininghighdegreeofcircularpolarizationatxrayfreeelectronlasersviaareverseundulatortaper |