Quantum simulation of an extended Dicke model with a magnetic solid

Abstract The Dicke model describes the cooperative interaction of an ensemble of two-level atoms with a single-mode photonic field and exhibits a quantum phase transition as a function of light–matter coupling strength. Extending this model by incorporating short-range atom–atom interactions makes t...

Full description

Bibliographic Details
Main Authors: Nicolas Marquez Peraca, Xinwei Li, Jaime M. Moya, Kenji Hayashida, Dasom Kim, Xiaoxuan Ma, Kelly J. Neubauer, Diego Fallas Padilla, Chien-Lung Huang, Pengcheng Dai, Andriy H. Nevidomskyy, Han Pu, Emilia Morosan, Shixun Cao, Motoaki Bamba, Junichiro Kono
Format: Article
Language:English
Published: Nature Portfolio 2024-03-01
Series:Communications Materials
Online Access:https://doi.org/10.1038/s43246-024-00479-3
_version_ 1827310098962186240
author Nicolas Marquez Peraca
Xinwei Li
Jaime M. Moya
Kenji Hayashida
Dasom Kim
Xiaoxuan Ma
Kelly J. Neubauer
Diego Fallas Padilla
Chien-Lung Huang
Pengcheng Dai
Andriy H. Nevidomskyy
Han Pu
Emilia Morosan
Shixun Cao
Motoaki Bamba
Junichiro Kono
author_facet Nicolas Marquez Peraca
Xinwei Li
Jaime M. Moya
Kenji Hayashida
Dasom Kim
Xiaoxuan Ma
Kelly J. Neubauer
Diego Fallas Padilla
Chien-Lung Huang
Pengcheng Dai
Andriy H. Nevidomskyy
Han Pu
Emilia Morosan
Shixun Cao
Motoaki Bamba
Junichiro Kono
author_sort Nicolas Marquez Peraca
collection DOAJ
description Abstract The Dicke model describes the cooperative interaction of an ensemble of two-level atoms with a single-mode photonic field and exhibits a quantum phase transition as a function of light–matter coupling strength. Extending this model by incorporating short-range atom–atom interactions makes the problem intractable but is expected to produce new physical phenomena and phases. Here, we simulate such an extended Dicke model using a crystal of ErFeO3, where the role of atoms (photons) is played by Er3+ spins (Fe3+ magnons). Through terahertz spectroscopy and magnetocaloric effect measurements as a function of temperature and magnetic field, we demonstrated the existence of a novel atomically ordered phase in addition to the superradiant and normal phases that are expected from the standard Dicke model. Further, we elucidated the nature of the phase boundaries in the temperature–magnetic-field phase diagram, identifying both first-order and second-order phase transitions. These results lay the foundation for studying multiatomic quantum optics models using well-characterized many-body solid-state systems.
first_indexed 2024-04-24T19:54:15Z
format Article
id doaj.art-c829da9d8b4142abbfce2464fa53d449
institution Directory Open Access Journal
issn 2662-4443
language English
last_indexed 2024-04-24T19:54:15Z
publishDate 2024-03-01
publisher Nature Portfolio
record_format Article
series Communications Materials
spelling doaj.art-c829da9d8b4142abbfce2464fa53d4492024-03-24T12:27:51ZengNature PortfolioCommunications Materials2662-44432024-03-01511910.1038/s43246-024-00479-3Quantum simulation of an extended Dicke model with a magnetic solidNicolas Marquez Peraca0Xinwei Li1Jaime M. Moya2Kenji Hayashida3Dasom Kim4Xiaoxuan Ma5Kelly J. Neubauer6Diego Fallas Padilla7Chien-Lung Huang8Pengcheng Dai9Andriy H. Nevidomskyy10Han Pu11Emilia Morosan12Shixun Cao13Motoaki Bamba14Junichiro Kono15Department of Physics and Astronomy, Rice UniversityDepartment of Physics, California Institute of TechnologyDepartment of Physics and Astronomy, Rice UniversityDivision of Applied Physics, Graduate School of Engineering, Hokkaido UniversityApplied Physics Graduate Program, Smalley–Curl Institute, Rice UniversityDepartment of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai UniversityDepartment of Physics and Astronomy, Rice UniversityDepartment of Physics and Astronomy, Rice UniversityDepartment of Physics and Astronomy, Rice UniversityDepartment of Physics and Astronomy, Rice UniversityDepartment of Physics and Astronomy, Rice UniversityDepartment of Physics and Astronomy, Rice UniversityDepartment of Physics and Astronomy, Rice UniversityDepartment of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai UniversityDepartment of Physics I, Kyoto UniversityDepartment of Physics and Astronomy, Rice UniversityAbstract The Dicke model describes the cooperative interaction of an ensemble of two-level atoms with a single-mode photonic field and exhibits a quantum phase transition as a function of light–matter coupling strength. Extending this model by incorporating short-range atom–atom interactions makes the problem intractable but is expected to produce new physical phenomena and phases. Here, we simulate such an extended Dicke model using a crystal of ErFeO3, where the role of atoms (photons) is played by Er3+ spins (Fe3+ magnons). Through terahertz spectroscopy and magnetocaloric effect measurements as a function of temperature and magnetic field, we demonstrated the existence of a novel atomically ordered phase in addition to the superradiant and normal phases that are expected from the standard Dicke model. Further, we elucidated the nature of the phase boundaries in the temperature–magnetic-field phase diagram, identifying both first-order and second-order phase transitions. These results lay the foundation for studying multiatomic quantum optics models using well-characterized many-body solid-state systems.https://doi.org/10.1038/s43246-024-00479-3
spellingShingle Nicolas Marquez Peraca
Xinwei Li
Jaime M. Moya
Kenji Hayashida
Dasom Kim
Xiaoxuan Ma
Kelly J. Neubauer
Diego Fallas Padilla
Chien-Lung Huang
Pengcheng Dai
Andriy H. Nevidomskyy
Han Pu
Emilia Morosan
Shixun Cao
Motoaki Bamba
Junichiro Kono
Quantum simulation of an extended Dicke model with a magnetic solid
Communications Materials
title Quantum simulation of an extended Dicke model with a magnetic solid
title_full Quantum simulation of an extended Dicke model with a magnetic solid
title_fullStr Quantum simulation of an extended Dicke model with a magnetic solid
title_full_unstemmed Quantum simulation of an extended Dicke model with a magnetic solid
title_short Quantum simulation of an extended Dicke model with a magnetic solid
title_sort quantum simulation of an extended dicke model with a magnetic solid
url https://doi.org/10.1038/s43246-024-00479-3
work_keys_str_mv AT nicolasmarquezperaca quantumsimulationofanextendeddickemodelwithamagneticsolid
AT xinweili quantumsimulationofanextendeddickemodelwithamagneticsolid
AT jaimemmoya quantumsimulationofanextendeddickemodelwithamagneticsolid
AT kenjihayashida quantumsimulationofanextendeddickemodelwithamagneticsolid
AT dasomkim quantumsimulationofanextendeddickemodelwithamagneticsolid
AT xiaoxuanma quantumsimulationofanextendeddickemodelwithamagneticsolid
AT kellyjneubauer quantumsimulationofanextendeddickemodelwithamagneticsolid
AT diegofallaspadilla quantumsimulationofanextendeddickemodelwithamagneticsolid
AT chienlunghuang quantumsimulationofanextendeddickemodelwithamagneticsolid
AT pengchengdai quantumsimulationofanextendeddickemodelwithamagneticsolid
AT andriyhnevidomskyy quantumsimulationofanextendeddickemodelwithamagneticsolid
AT hanpu quantumsimulationofanextendeddickemodelwithamagneticsolid
AT emiliamorosan quantumsimulationofanextendeddickemodelwithamagneticsolid
AT shixuncao quantumsimulationofanextendeddickemodelwithamagneticsolid
AT motoakibamba quantumsimulationofanextendeddickemodelwithamagneticsolid
AT junichirokono quantumsimulationofanextendeddickemodelwithamagneticsolid