Genome Reorganization during Erythroid Differentiation

Hematopoiesis is a convenient model to study how chromatin dynamics plays a decisive role in regulation of cell fate. During erythropoiesis a population of stem and progenitor cells becomes increasingly lineage restricted, giving rise to terminally differentiated progeny. The concerted action of tra...

Full description

Bibliographic Details
Main Authors: Anastasia Ryzhkova, Nariman Battulin
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Genes
Subjects:
Online Access:https://www.mdpi.com/2073-4425/12/7/1012
Description
Summary:Hematopoiesis is a convenient model to study how chromatin dynamics plays a decisive role in regulation of cell fate. During erythropoiesis a population of stem and progenitor cells becomes increasingly lineage restricted, giving rise to terminally differentiated progeny. The concerted action of transcription factors and epigenetic modifiers leads to a silencing of the multipotent transcriptome and activation of the transcriptional program that controls terminal differentiation. This article reviews some aspects of the biology of red blood cells production with the focus on the extensive chromatin reorganization during differentiation.
ISSN:2073-4425