Effects of hypnotic bromovalerylurea on microglial BV2 cells

An old sedative and hypnotic bromovalerylurea (BU) has anti-inflammatory effects. BU suppressed nitric oxide (NO) release and proinflammatory cytokine expression by lipopolysaccharide (LPS)-treated BV2 cells, a murine microglial cell line. However, BU did not inhibit LPS-induced nuclear translocatio...

Full description

Bibliographic Details
Main Authors: Shun Kawasaki, Naoki Abe, Fumito Ohtake, Afsana Islam, Mohammed Emamussalehin Choudhury, Ryo Utsunomiya, Satoshi Kikuchi, Tasuku Nishihara, Jun Kuwabara, Hajime Yano, Yuji Watanabe, Mayuki Aibiki, Toshihiro Yorozuya, Junya Tanaka
Format: Article
Language:English
Published: Elsevier 2017-06-01
Series:Journal of Pharmacological Sciences
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1347861317300816
Description
Summary:An old sedative and hypnotic bromovalerylurea (BU) has anti-inflammatory effects. BU suppressed nitric oxide (NO) release and proinflammatory cytokine expression by lipopolysaccharide (LPS)-treated BV2 cells, a murine microglial cell line. However, BU did not inhibit LPS-induced nuclear translocation of nuclear factor-κB and subsequent transcription. BU suppressed LPS-induced phosphorylation of signal transducer and activator of transcription 1 (STAT1) and expression of interferon regulatory factor 1 (IRF1). The Janus kinase 1 (JAK1) inhibitor filgotinib suppressed the NO release much more weakly than that of BU, although filgotinib almost completely prevented LPS-induced STAT1 phosphorylation. Knockdown of JAK1, STAT1, or IRF1 did not affect the suppressive effects of BU on LPS-induced NO release by BV2 cells. A combination of BU and filgotinib synergistically suppressed the NO release. The mitochondrial complex I inhibitor rotenone, which did not prevent STAT1 phosphorylation or IRF1 expression, suppressed proinflammatory mediator expression less significantly than BU. BU and rotenone reduced intracellular ATP (iATP) levels to a similar extent. A combination of rotenone and filgotinib suppressed NO release by LPS-treated BV2 cells as strongly as BU. These results suggest that anti-inflammatory actions of BU may be attributable to the synergism of inhibition of JAK1/STAT1-dependent pathways and reduction in iATP level.
ISSN:1347-8613