Summary: | The management of agricultural soils affect the composition and scale of their greenhouse gas (GHG) emissions. There is conflicting evidence on the effect of zero-tillage on carbon storage and GHG emissions. Here we assess the effects of zero-tillage over a range of time frames (1–15 years) on carbon storage and GHG release and their controls in the UK Net global warming potential was 30% lower under zero-tillage systems, due to lower carbon dioxide fluxes, with the greatest impacts after longer periods of zero-tillage management. Simultaneously, in zero-tillage systems, soil carbon stocks and the proportion of sequestered recalcitrant carbon increased while the temperature sensitivity of soil respiration decreased with time, compared to conventionally soils. We conclude that zero-tillage could play a crucial role in both reducing GHG emissions and at the same time increase soil carbon sequestration, therefore contributing to mitigate against climate change. Our findings are particularly important in the context of designing new policies (for example the Environmental Land Management Schemes in the UK) that ensure the sustainability of agricultural production in a changing climate.
|