Structure–Fluid–Mineralization System of Jiadi Gold Deposit in Southwestern Guizhou, China

The Jiadi gold deposit, situated in the Southwestern region of Guizhou, is a large-scale, recently discovered, basalt-hosted, and fine-grained disseminated gold deposit. This study has unveiled that the tectonic deformation of the Jiadi gold deposit can be categorized into four stages: the Late Pale...

Full description

Bibliographic Details
Main Authors: Zhuang Min, Wengao Zhang, Jiayong Pan, Zhenju Zhou, Hailong Huo, Guangwen Huang
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/13/7/896
Description
Summary:The Jiadi gold deposit, situated in the Southwestern region of Guizhou, is a large-scale, recently discovered, basalt-hosted, and fine-grained disseminated gold deposit. This study has unveiled that the tectonic deformation of the Jiadi gold deposit can be categorized into four stages: the Late Paleozoic crustal uplift and brittle deformation (D1-deformation) stage; the Early Yanshanian NW-trending compressive ductile deformation (D2-deformation) stage; the Late Yanshanian NS-trending strike-slip fault (D3-deformation) stage; and the Himalayan EW-trending nappe structure (D4-deformation) stage. The outcomes of the C-O isotope analysis revealed that the fluid responsible for ore formation exhibits the attributes of magmatic water blended with meteoric water, and the metallogenic constituents primarily originate from a deep source. The formation of the Jiadi gold deposit occurred during the D2-deformation stage and extended to the D3-deformation stage. The D2-deformation stage induced hydrothermal activity and rock devolatilization, leading to the generation of CO<sub>2</sub>-rich and low-salinity fluids. The D3-deformation stage, which is intimately associated with mineralization, can be classified into three stages: the pyrite stage; the smoky quartz stage; and the sulfide stage. The findings obtained from laser Raman spectroscopy indicate that the inclusions typically comprise CO<sub>2,</sub> CH<sub>4</sub>, N<sub>2</sub>, and SO<sub>2</sub>. These deep fluids ascended along the fault to the interlayer fracture zone during the D3-deformation stage. The alteration of the geochemical environment was accompanied by fluid immiscibility or boiling, resulting in the rapid precipitation of metallogenic materials.
ISSN:2075-163X