Quantitative Evaluation of Food-Waste Components in Organic Fertilizer Using Visible–Near-Infrared Hyperspectral Imaging

Excessive addition of food waste fertilizer to organic fertilizer (OF) is forbidden in the Republic of Korea because of high sodium chloride and capsaicin concentrations in Korean food. Thus, rapid and nondestructive evaluation techniques are required. The objective of this study is to quantitativel...

Full description

Bibliographic Details
Main Authors: Geonwoo Kim, Hoonsoo Lee, Byoung-Kwan Cho, Insuck Baek, Moon S. Kim
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/17/8201
Description
Summary:Excessive addition of food waste fertilizer to organic fertilizer (OF) is forbidden in the Republic of Korea because of high sodium chloride and capsaicin concentrations in Korean food. Thus, rapid and nondestructive evaluation techniques are required. The objective of this study is to quantitatively evaluate food-waste components (FWCs) using hyperspectral imaging (HSI) in the visible–near-infrared (Vis/NIR) region. A HSI system for evaluating fertilizer components and prediction algorithms based on partial least squares (PLS) analysis and least squares support vector machines (LS-SVM) are developed. PLS and LS-SVM preprocessing methods are employed and compared to select the optimal of two chemometrics methods. Finally, distribution maps visualized using the LS-SVM model are created to interpret the dynamic changes in the OF FWCs with increasing FWC concentration. The developed model quantitively evaluates the OF FWCs with a coefficient of determination of 0.83 between the predicted and actual values. The developed Vis/NIR HIS system and optimized model exhibit high potential for OF FWC discrimination and quantitative evaluation.
ISSN:2076-3417