A Study on Dual Hyperbolic Fibonacci and Lucas Numbers
In this study, the dual-hyperbolic Fibonacci and dual-hyperbolic Lucas numbers are introduced. Then, the fundamental identities are proven for these numbers. Additionally, we give the identities regarding negadual-hyperbolic Fibonacci and negadual-hyperbolic Lucas numbers. Finally, Binet formulas, D...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2019-03-01
|
Series: | Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica |
Subjects: | |
Online Access: | https://doi.org/10.2478/auom-2019-0002 |
_version_ | 1818745161957507072 |
---|---|
author | Cihan Arzu Azak Ayşe Zeynep Güngör Mehmet Ali Tosun Murat |
author_facet | Cihan Arzu Azak Ayşe Zeynep Güngör Mehmet Ali Tosun Murat |
author_sort | Cihan Arzu |
collection | DOAJ |
description | In this study, the dual-hyperbolic Fibonacci and dual-hyperbolic Lucas numbers are introduced. Then, the fundamental identities are proven for these numbers. Additionally, we give the identities regarding negadual-hyperbolic Fibonacci and negadual-hyperbolic Lucas numbers. Finally, Binet formulas, D’Ocagne, Catalan and Cassini identities are obtained for dual-hyperbolic Fibonacci and dual-hyperbolic Lucas numbers. |
first_indexed | 2024-12-18T02:55:49Z |
format | Article |
id | doaj.art-c87530ebb0344fa3b5f616afa5ec8386 |
institution | Directory Open Access Journal |
issn | 1844-0835 |
language | English |
last_indexed | 2024-12-18T02:55:49Z |
publishDate | 2019-03-01 |
publisher | Sciendo |
record_format | Article |
series | Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica |
spelling | doaj.art-c87530ebb0344fa3b5f616afa5ec83862022-12-21T21:23:22ZengSciendoAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica1844-08352019-03-01271354810.2478/auom-2019-0002A Study on Dual Hyperbolic Fibonacci and Lucas NumbersCihan Arzu0Azak Ayşe Zeynep1Güngör Mehmet Ali2Tosun Murat3Department of Mathematics, Sakarya University, 54187Sakarya, Turkey.Department of Mathematics and Science Education, Sakarya University, 54300Sakarya, Turkey.Department of Mathematics, Sakarya University, 54187Sakarya, Turkey.Department of Mathematics, Sakarya University, 54187Sakarya, Turkey.In this study, the dual-hyperbolic Fibonacci and dual-hyperbolic Lucas numbers are introduced. Then, the fundamental identities are proven for these numbers. Additionally, we give the identities regarding negadual-hyperbolic Fibonacci and negadual-hyperbolic Lucas numbers. Finally, Binet formulas, D’Ocagne, Catalan and Cassini identities are obtained for dual-hyperbolic Fibonacci and dual-hyperbolic Lucas numbers.https://doi.org/10.2478/auom-2019-0002dual-hyperbolic numbersdual-hyperbolic fibonacci numbersdual-hyperbolic lucas numbersprimary 11b39secondary 11b83 |
spellingShingle | Cihan Arzu Azak Ayşe Zeynep Güngör Mehmet Ali Tosun Murat A Study on Dual Hyperbolic Fibonacci and Lucas Numbers Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica dual-hyperbolic numbers dual-hyperbolic fibonacci numbers dual-hyperbolic lucas numbers primary 11b39 secondary 11b83 |
title | A Study on Dual Hyperbolic Fibonacci and Lucas Numbers |
title_full | A Study on Dual Hyperbolic Fibonacci and Lucas Numbers |
title_fullStr | A Study on Dual Hyperbolic Fibonacci and Lucas Numbers |
title_full_unstemmed | A Study on Dual Hyperbolic Fibonacci and Lucas Numbers |
title_short | A Study on Dual Hyperbolic Fibonacci and Lucas Numbers |
title_sort | study on dual hyperbolic fibonacci and lucas numbers |
topic | dual-hyperbolic numbers dual-hyperbolic fibonacci numbers dual-hyperbolic lucas numbers primary 11b39 secondary 11b83 |
url | https://doi.org/10.2478/auom-2019-0002 |
work_keys_str_mv | AT cihanarzu astudyondualhyperbolicfibonacciandlucasnumbers AT azakaysezeynep astudyondualhyperbolicfibonacciandlucasnumbers AT gungormehmetali astudyondualhyperbolicfibonacciandlucasnumbers AT tosunmurat astudyondualhyperbolicfibonacciandlucasnumbers AT cihanarzu studyondualhyperbolicfibonacciandlucasnumbers AT azakaysezeynep studyondualhyperbolicfibonacciandlucasnumbers AT gungormehmetali studyondualhyperbolicfibonacciandlucasnumbers AT tosunmurat studyondualhyperbolicfibonacciandlucasnumbers |