A Study on Dual Hyperbolic Fibonacci and Lucas Numbers

In this study, the dual-hyperbolic Fibonacci and dual-hyperbolic Lucas numbers are introduced. Then, the fundamental identities are proven for these numbers. Additionally, we give the identities regarding negadual-hyperbolic Fibonacci and negadual-hyperbolic Lucas numbers. Finally, Binet formulas, D...

Full description

Bibliographic Details
Main Authors: Cihan Arzu, Azak Ayşe Zeynep, Güngör Mehmet Ali, Tosun Murat
Format: Article
Language:English
Published: Sciendo 2019-03-01
Series:Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
Subjects:
Online Access:https://doi.org/10.2478/auom-2019-0002
_version_ 1818745161957507072
author Cihan Arzu
Azak Ayşe Zeynep
Güngör Mehmet Ali
Tosun Murat
author_facet Cihan Arzu
Azak Ayşe Zeynep
Güngör Mehmet Ali
Tosun Murat
author_sort Cihan Arzu
collection DOAJ
description In this study, the dual-hyperbolic Fibonacci and dual-hyperbolic Lucas numbers are introduced. Then, the fundamental identities are proven for these numbers. Additionally, we give the identities regarding negadual-hyperbolic Fibonacci and negadual-hyperbolic Lucas numbers. Finally, Binet formulas, D’Ocagne, Catalan and Cassini identities are obtained for dual-hyperbolic Fibonacci and dual-hyperbolic Lucas numbers.
first_indexed 2024-12-18T02:55:49Z
format Article
id doaj.art-c87530ebb0344fa3b5f616afa5ec8386
institution Directory Open Access Journal
issn 1844-0835
language English
last_indexed 2024-12-18T02:55:49Z
publishDate 2019-03-01
publisher Sciendo
record_format Article
series Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
spelling doaj.art-c87530ebb0344fa3b5f616afa5ec83862022-12-21T21:23:22ZengSciendoAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica1844-08352019-03-01271354810.2478/auom-2019-0002A Study on Dual Hyperbolic Fibonacci and Lucas NumbersCihan Arzu0Azak Ayşe Zeynep1Güngör Mehmet Ali2Tosun Murat3Department of Mathematics, Sakarya University, 54187Sakarya, Turkey.Department of Mathematics and Science Education, Sakarya University, 54300Sakarya, Turkey.Department of Mathematics, Sakarya University, 54187Sakarya, Turkey.Department of Mathematics, Sakarya University, 54187Sakarya, Turkey.In this study, the dual-hyperbolic Fibonacci and dual-hyperbolic Lucas numbers are introduced. Then, the fundamental identities are proven for these numbers. Additionally, we give the identities regarding negadual-hyperbolic Fibonacci and negadual-hyperbolic Lucas numbers. Finally, Binet formulas, D’Ocagne, Catalan and Cassini identities are obtained for dual-hyperbolic Fibonacci and dual-hyperbolic Lucas numbers.https://doi.org/10.2478/auom-2019-0002dual-hyperbolic numbersdual-hyperbolic fibonacci numbersdual-hyperbolic lucas numbersprimary 11b39secondary 11b83
spellingShingle Cihan Arzu
Azak Ayşe Zeynep
Güngör Mehmet Ali
Tosun Murat
A Study on Dual Hyperbolic Fibonacci and Lucas Numbers
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
dual-hyperbolic numbers
dual-hyperbolic fibonacci numbers
dual-hyperbolic lucas numbers
primary 11b39
secondary 11b83
title A Study on Dual Hyperbolic Fibonacci and Lucas Numbers
title_full A Study on Dual Hyperbolic Fibonacci and Lucas Numbers
title_fullStr A Study on Dual Hyperbolic Fibonacci and Lucas Numbers
title_full_unstemmed A Study on Dual Hyperbolic Fibonacci and Lucas Numbers
title_short A Study on Dual Hyperbolic Fibonacci and Lucas Numbers
title_sort study on dual hyperbolic fibonacci and lucas numbers
topic dual-hyperbolic numbers
dual-hyperbolic fibonacci numbers
dual-hyperbolic lucas numbers
primary 11b39
secondary 11b83
url https://doi.org/10.2478/auom-2019-0002
work_keys_str_mv AT cihanarzu astudyondualhyperbolicfibonacciandlucasnumbers
AT azakaysezeynep astudyondualhyperbolicfibonacciandlucasnumbers
AT gungormehmetali astudyondualhyperbolicfibonacciandlucasnumbers
AT tosunmurat astudyondualhyperbolicfibonacciandlucasnumbers
AT cihanarzu studyondualhyperbolicfibonacciandlucasnumbers
AT azakaysezeynep studyondualhyperbolicfibonacciandlucasnumbers
AT gungormehmetali studyondualhyperbolicfibonacciandlucasnumbers
AT tosunmurat studyondualhyperbolicfibonacciandlucasnumbers