Bending test in epoxy composites reinforced with continuous and aligned PALF fibers

Sustainable actions aiming to prevent increasing worldwide pollution are motivating the substitution of environmentally friendly materials for conventional synthetic ones. A typical example is the use of natural lignocellulosic fiber (LCF) as reinforcement of polymer composites that have traditional...

Full description

Bibliographic Details
Main Authors: Gabriel Oliveira Glória, Maria Carolina Andrade Teles, Anna Carolina Cerqueira Neves, Carlos Maurício Fontes Vieira, Felipe Perissé Duarte Lopes, Maycon de Almeida Gomes, Frederico Muylaert Margem, Sergio Neves Monteiro
Format: Article
Language:English
Published: Elsevier 2017-10-01
Series:Journal of Materials Research and Technology
Online Access:http://www.sciencedirect.com/science/article/pii/S2238785417303046
Description
Summary:Sustainable actions aiming to prevent increasing worldwide pollution are motivating the substitution of environmentally friendly materials for conventional synthetic ones. A typical example is the use of natural lignocellulosic fiber (LCF) as reinforcement of polymer composites that have traditionally been reinforced with glass fiber. Both scientific research and engineering applications support the use of numerous LCFs composites. The pineapple fiber (PALF), extracted from the leaves of Ananas comosus, is considered a LCF with potential for composite reinforcement. However, specific mechanical properties and microstructural characterization are still necessary for this purpose. Therefore, the objective of this short work is to evaluate the flexural properties, by means of three points, bend tests, of epoxy composites incorporated with up to 30 vol% of PALF. Results reveal that continuous and aligned fibers significantly increase the flexural strength. Scanning electron microscopy disclosed the fracture mechanism responsible for this reinforcement. Keywords: Pineapple fibers, PALF, Flexural properties, Bending test, Epoxy composites, Fracture mechanism
ISSN:2238-7854