Advanced Fabrication and Multi-Properties of Aluminum-Based Aerogels from Aluminum Waste for Thermal Insulation and Oil Absorption Applications

Metal-based aerogels have attracted numerous studies due to their unique physical, structural, thermal, and chemical properties. Utilizing aluminum waste, a novel, facile, environmentally friendly approach to aluminum-based aerogels is proposed. In this work, the aluminum-based aerogels produced do...

Full description

Bibliographic Details
Main Authors: Xue Yang Goh, Ren Hong Ong, Phuc T. T. Nguyen, Tianliang Bai, Dave Aw, Tian Li, Luon Tan Nguyen, Hai M. Duong
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/28/6/2727
Description
Summary:Metal-based aerogels have attracted numerous studies due to their unique physical, structural, thermal, and chemical properties. Utilizing aluminum waste, a novel, facile, environmentally friendly approach to aluminum-based aerogels is proposed. In this work, the aluminum-based aerogels produced do not use toxic chemicals unlike conventional aerogel production. Aluminum powder, with poly(acrylic acid) and carboxymethyl cellulose as binders, is converted into aluminum-based aerogels using the freeze-drying method. The aluminum-based aerogels have low density (0.08–0.12 g/cm<sup>3</sup>) and high porosity (93.83–95.68%). The thermal conductivity of the aerogels obtained is very low (0.038–0.045 W/m·K), comparable to other types of aerogels and commercial heat insulation materials. Additionally, the aerogels can withstand temperatures up to 1000 °C with less than 40% decomposition. The aerogels exhibited promising oil absorption properties with their absorption capacity of 9.8 g/g and 0.784 g/cm<sup>3</sup>. The Young’s modulus of the aerogels ranged from 70.6 kPa to 330.2 kPa. This study suggests that aluminum-based aerogels have potential in thermal insulation and oil absorption applications.
ISSN:1420-3049