Three-dimensional data assimilation for ionospheric reference scenarios

The reliable estimation of ionospheric refraction effects is an important topic in the GNSS (Global Navigation Satellite Systems) positioning and navigation domain, especially in safety-of-life applications. This paper describes a three-dimensional ionosphere reconstruction approach that combines...

Full description

Bibliographic Details
Main Authors: T. Gerzen, V. Wilken, D. Minkwitz, M. M. Hoque, S. Schlüter
Format: Article
Language:English
Published: Copernicus Publications 2017-02-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/35/203/2017/angeo-35-203-2017.pdf
_version_ 1818617227967987712
author T. Gerzen
V. Wilken
D. Minkwitz
M. M. Hoque
S. Schlüter
author_facet T. Gerzen
V. Wilken
D. Minkwitz
M. M. Hoque
S. Schlüter
author_sort T. Gerzen
collection DOAJ
description The reliable estimation of ionospheric refraction effects is an important topic in the GNSS (Global Navigation Satellite Systems) positioning and navigation domain, especially in safety-of-life applications. This paper describes a three-dimensional ionosphere reconstruction approach that combines three data sources with an ionospheric background model: space- and ground-based total electron content (TEC) measurements and ionosonde observations. First the background model is adjusted by F2 layer characteristics, obtained from space-based ionospheric radio occultation (IRO) profiles and ionosonde data, and secondly the final electron density distribution is estimated by an algebraic reconstruction technique.<br><br>The method described is validated by TEC measurements of independent ground-based GNSS stations, space-based TEC from the Jason 1 and 2 satellites, and ionosonde observations. A significant improvement is achieved by the data assimilation, with a decrease in the residual errors by up to 98 % compared to the initial guess of the background. Furthermore, the results underpin the capability of space-based measurements to overcome data gaps in reconstruction areas where less GNSS ground-station infrastructure exists.
first_indexed 2024-12-16T17:02:21Z
format Article
id doaj.art-c89223822e1a4c739b6600fae7c42f4d
institution Directory Open Access Journal
issn 0992-7689
1432-0576
language English
last_indexed 2024-12-16T17:02:21Z
publishDate 2017-02-01
publisher Copernicus Publications
record_format Article
series Annales Geophysicae
spelling doaj.art-c89223822e1a4c739b6600fae7c42f4d2022-12-21T22:23:41ZengCopernicus PublicationsAnnales Geophysicae0992-76891432-05762017-02-013520321510.5194/angeo-35-203-2017Three-dimensional data assimilation for ionospheric reference scenariosT. Gerzen0V. Wilken1D. Minkwitz2M. M. Hoque3S. Schlüter4German Aerospace Center (DLR), Institute of Communications and Navigation, Kalkhorstweg 53, 17235 Neustrelitz, GermanyGerman Aerospace Center (DLR), Institute of Communications and Navigation, Kalkhorstweg 53, 17235 Neustrelitz, GermanyGerman Aerospace Center (DLR), Institute of Communications and Navigation, Kalkhorstweg 53, 17235 Neustrelitz, GermanyGerman Aerospace Center (DLR), Institute of Communications and Navigation, Kalkhorstweg 53, 17235 Neustrelitz, GermanyEuropean Space Agency ESA – EGNOS Project Office, 31401 Toulouse CEDEX 4, FranceThe reliable estimation of ionospheric refraction effects is an important topic in the GNSS (Global Navigation Satellite Systems) positioning and navigation domain, especially in safety-of-life applications. This paper describes a three-dimensional ionosphere reconstruction approach that combines three data sources with an ionospheric background model: space- and ground-based total electron content (TEC) measurements and ionosonde observations. First the background model is adjusted by F2 layer characteristics, obtained from space-based ionospheric radio occultation (IRO) profiles and ionosonde data, and secondly the final electron density distribution is estimated by an algebraic reconstruction technique.<br><br>The method described is validated by TEC measurements of independent ground-based GNSS stations, space-based TEC from the Jason 1 and 2 satellites, and ionosonde observations. A significant improvement is achieved by the data assimilation, with a decrease in the residual errors by up to 98 % compared to the initial guess of the background. Furthermore, the results underpin the capability of space-based measurements to overcome data gaps in reconstruction areas where less GNSS ground-station infrastructure exists.https://www.ann-geophys.net/35/203/2017/angeo-35-203-2017.pdf
spellingShingle T. Gerzen
V. Wilken
D. Minkwitz
M. M. Hoque
S. Schlüter
Three-dimensional data assimilation for ionospheric reference scenarios
Annales Geophysicae
title Three-dimensional data assimilation for ionospheric reference scenarios
title_full Three-dimensional data assimilation for ionospheric reference scenarios
title_fullStr Three-dimensional data assimilation for ionospheric reference scenarios
title_full_unstemmed Three-dimensional data assimilation for ionospheric reference scenarios
title_short Three-dimensional data assimilation for ionospheric reference scenarios
title_sort three dimensional data assimilation for ionospheric reference scenarios
url https://www.ann-geophys.net/35/203/2017/angeo-35-203-2017.pdf
work_keys_str_mv AT tgerzen threedimensionaldataassimilationforionosphericreferencescenarios
AT vwilken threedimensionaldataassimilationforionosphericreferencescenarios
AT dminkwitz threedimensionaldataassimilationforionosphericreferencescenarios
AT mmhoque threedimensionaldataassimilationforionosphericreferencescenarios
AT sschluter threedimensionaldataassimilationforionosphericreferencescenarios