Positive Solutions of a Fractional Boundary Value Problem with Sequential Derivatives
We investigate the existence of positive solutions of a Riemann-Liouville fractional differential equation with sequential derivatives, a positive parameter and a nonnegative singular nonlinearity, supplemented with integral-multipoint boundary conditions which contain fractional derivatives of vari...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/8/1489 |
Summary: | We investigate the existence of positive solutions of a Riemann-Liouville fractional differential equation with sequential derivatives, a positive parameter and a nonnegative singular nonlinearity, supplemented with integral-multipoint boundary conditions which contain fractional derivatives of various orders and Riemann-Stieltjes integrals. Our general boundary conditions cover some symmetry cases for the unknown function. In the proof of our main existence result, we use an application of the Krein-Rutman theorem and two theorems from the fixed point index theory. |
---|---|
ISSN: | 2073-8994 |