A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing
Optomechanical nanocavities open a new hybrid platform such that the interaction between an optical cavity and mechanical oscillator can be achieved on a nanophotonic scale. Owing to attractive advantages such as ultrasmall mass, high optical quality, small mode volume and flexible mechanics, a pair...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Crystals |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4352/11/5/462 |
_version_ | 1797536874531651584 |
---|---|
author | Ji Xia Fuyin Wang Chunyan Cao Zhengliang Hu Heng Yang Shuidong Xiong |
author_facet | Ji Xia Fuyin Wang Chunyan Cao Zhengliang Hu Heng Yang Shuidong Xiong |
author_sort | Ji Xia |
collection | DOAJ |
description | Optomechanical nanocavities open a new hybrid platform such that the interaction between an optical cavity and mechanical oscillator can be achieved on a nanophotonic scale. Owing to attractive advantages such as ultrasmall mass, high optical quality, small mode volume and flexible mechanics, a pair of coupled photonic crystal nanobeam (PCN) cavities are utilized in this paper to establish an optomechanical nanosystem, thus enabling strong optomechanical coupling effects. In coupled PCN cavities, one nanobeam with a mass m<sub>eff</sub>~3 pg works as an in-plane movable mechanical oscillator at a fundamental frequency of <inline-formula>π<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="sans-serif">Ω</mi><mi mathvariant="normal">m</mi></msub><mrow><mo>/</mo><mn>2</mn><mi mathvariant="sans-serif">π</mi><mo>=</mo><mn>4.148</mn></mrow><mrow><mo> </mo><mi>MHz</mi></mrow></mrow></semantics></math></inline-formula>. The other nanobeam couples light to excite optical fundamental supermodes at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1542.858</mn></mrow></semantics></math></inline-formula> and 1554.464 nm with a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">Q</mi><mi mathvariant="normal">o</mi></msub></mrow></semantics></math></inline-formula> larger than 4 × 10<sup>4</sup>. Because of the optomechanical backaction arising from an optical force, abundant optomechanical phenomena in the unresolved sideband are observed in the movable nanobeam. Moreover, benefiting from the in-plane movement of the flexible nanobeam, we achieved a maximum displacement of the movable nanobeam as 1468 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mi>fm</mi><mo>/</mo><mi>Hz</mi></mrow></mrow><mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></mrow></msup></mrow></semantics></math></inline-formula>. These characteristics indicate that this optomechanical nanocavity is capable of ultrasensitive motion measurements. |
first_indexed | 2024-03-10T12:07:02Z |
format | Article |
id | doaj.art-c8b17496de0441c9a186588225d318da |
institution | Directory Open Access Journal |
issn | 2073-4352 |
language | English |
last_indexed | 2024-03-10T12:07:02Z |
publishDate | 2021-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Crystals |
spelling | doaj.art-c8b17496de0441c9a186588225d318da2023-11-21T16:33:08ZengMDPI AGCrystals2073-43522021-04-0111546210.3390/cryst11050462A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion SensingJi Xia0Fuyin Wang1Chunyan Cao2Zhengliang Hu3Heng Yang4Shuidong Xiong5College of Meteorology and Oceanography, National University of Defence Technology, Changsha 410073, ChinaCollege of Meteorology and Oceanography, National University of Defence Technology, Changsha 410073, ChinaCollege of Meteorology and Oceanography, National University of Defence Technology, Changsha 410073, ChinaCollege of Meteorology and Oceanography, National University of Defence Technology, Changsha 410073, ChinaCollege of Meteorology and Oceanography, National University of Defence Technology, Changsha 410073, ChinaCollege of Meteorology and Oceanography, National University of Defence Technology, Changsha 410073, ChinaOptomechanical nanocavities open a new hybrid platform such that the interaction between an optical cavity and mechanical oscillator can be achieved on a nanophotonic scale. Owing to attractive advantages such as ultrasmall mass, high optical quality, small mode volume and flexible mechanics, a pair of coupled photonic crystal nanobeam (PCN) cavities are utilized in this paper to establish an optomechanical nanosystem, thus enabling strong optomechanical coupling effects. In coupled PCN cavities, one nanobeam with a mass m<sub>eff</sub>~3 pg works as an in-plane movable mechanical oscillator at a fundamental frequency of <inline-formula>π<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="sans-serif">Ω</mi><mi mathvariant="normal">m</mi></msub><mrow><mo>/</mo><mn>2</mn><mi mathvariant="sans-serif">π</mi><mo>=</mo><mn>4.148</mn></mrow><mrow><mo> </mo><mi>MHz</mi></mrow></mrow></semantics></math></inline-formula>. The other nanobeam couples light to excite optical fundamental supermodes at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1542.858</mn></mrow></semantics></math></inline-formula> and 1554.464 nm with a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">Q</mi><mi mathvariant="normal">o</mi></msub></mrow></semantics></math></inline-formula> larger than 4 × 10<sup>4</sup>. Because of the optomechanical backaction arising from an optical force, abundant optomechanical phenomena in the unresolved sideband are observed in the movable nanobeam. Moreover, benefiting from the in-plane movement of the flexible nanobeam, we achieved a maximum displacement of the movable nanobeam as 1468 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mi>fm</mi><mo>/</mo><mi>Hz</mi></mrow></mrow><mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></mrow></msup></mrow></semantics></math></inline-formula>. These characteristics indicate that this optomechanical nanocavity is capable of ultrasensitive motion measurements.https://www.mdpi.com/2073-4352/11/5/462photonic crystal nanobeamoptomechanical couplingoptical forcedisplacement sensitivity |
spellingShingle | Ji Xia Fuyin Wang Chunyan Cao Zhengliang Hu Heng Yang Shuidong Xiong A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing Crystals photonic crystal nanobeam optomechanical coupling optical force displacement sensitivity |
title | A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing |
title_full | A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing |
title_fullStr | A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing |
title_full_unstemmed | A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing |
title_short | A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing |
title_sort | nanoscale photonic crystal cavity optomechanical system for ultrasensitive motion sensing |
topic | photonic crystal nanobeam optomechanical coupling optical force displacement sensitivity |
url | https://www.mdpi.com/2073-4352/11/5/462 |
work_keys_str_mv | AT jixia ananoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing AT fuyinwang ananoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing AT chunyancao ananoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing AT zhenglianghu ananoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing AT hengyang ananoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing AT shuidongxiong ananoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing AT jixia nanoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing AT fuyinwang nanoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing AT chunyancao nanoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing AT zhenglianghu nanoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing AT hengyang nanoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing AT shuidongxiong nanoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing |