A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing

Optomechanical nanocavities open a new hybrid platform such that the interaction between an optical cavity and mechanical oscillator can be achieved on a nanophotonic scale. Owing to attractive advantages such as ultrasmall mass, high optical quality, small mode volume and flexible mechanics, a pair...

Full description

Bibliographic Details
Main Authors: Ji Xia, Fuyin Wang, Chunyan Cao, Zhengliang Hu, Heng Yang, Shuidong Xiong
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/11/5/462
_version_ 1797536874531651584
author Ji Xia
Fuyin Wang
Chunyan Cao
Zhengliang Hu
Heng Yang
Shuidong Xiong
author_facet Ji Xia
Fuyin Wang
Chunyan Cao
Zhengliang Hu
Heng Yang
Shuidong Xiong
author_sort Ji Xia
collection DOAJ
description Optomechanical nanocavities open a new hybrid platform such that the interaction between an optical cavity and mechanical oscillator can be achieved on a nanophotonic scale. Owing to attractive advantages such as ultrasmall mass, high optical quality, small mode volume and flexible mechanics, a pair of coupled photonic crystal nanobeam (PCN) cavities are utilized in this paper to establish an optomechanical nanosystem, thus enabling strong optomechanical coupling effects. In coupled PCN cavities, one nanobeam with a mass m<sub>eff</sub>~3 pg works as an in-plane movable mechanical oscillator at a fundamental frequency of <inline-formula>π<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="sans-serif">Ω</mi><mi mathvariant="normal">m</mi></msub><mrow><mo>/</mo><mn>2</mn><mi mathvariant="sans-serif">π</mi><mo>=</mo><mn>4.148</mn></mrow><mrow><mo> </mo><mi>MHz</mi></mrow></mrow></semantics></math></inline-formula>. The other nanobeam couples light to excite optical fundamental supermodes at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1542.858</mn></mrow></semantics></math></inline-formula> and 1554.464 nm with a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">Q</mi><mi mathvariant="normal">o</mi></msub></mrow></semantics></math></inline-formula> larger than 4 × 10<sup>4</sup>. Because of the optomechanical backaction arising from an optical force, abundant optomechanical phenomena in the unresolved sideband are observed in the movable nanobeam. Moreover, benefiting from the in-plane movement of the flexible nanobeam, we achieved a maximum displacement of the movable nanobeam as 1468 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mi>fm</mi><mo>/</mo><mi>Hz</mi></mrow></mrow><mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></mrow></msup></mrow></semantics></math></inline-formula>. These characteristics indicate that this optomechanical nanocavity is capable of ultrasensitive motion measurements.
first_indexed 2024-03-10T12:07:02Z
format Article
id doaj.art-c8b17496de0441c9a186588225d318da
institution Directory Open Access Journal
issn 2073-4352
language English
last_indexed 2024-03-10T12:07:02Z
publishDate 2021-04-01
publisher MDPI AG
record_format Article
series Crystals
spelling doaj.art-c8b17496de0441c9a186588225d318da2023-11-21T16:33:08ZengMDPI AGCrystals2073-43522021-04-0111546210.3390/cryst11050462A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion SensingJi Xia0Fuyin Wang1Chunyan Cao2Zhengliang Hu3Heng Yang4Shuidong Xiong5College of Meteorology and Oceanography, National University of Defence Technology, Changsha 410073, ChinaCollege of Meteorology and Oceanography, National University of Defence Technology, Changsha 410073, ChinaCollege of Meteorology and Oceanography, National University of Defence Technology, Changsha 410073, ChinaCollege of Meteorology and Oceanography, National University of Defence Technology, Changsha 410073, ChinaCollege of Meteorology and Oceanography, National University of Defence Technology, Changsha 410073, ChinaCollege of Meteorology and Oceanography, National University of Defence Technology, Changsha 410073, ChinaOptomechanical nanocavities open a new hybrid platform such that the interaction between an optical cavity and mechanical oscillator can be achieved on a nanophotonic scale. Owing to attractive advantages such as ultrasmall mass, high optical quality, small mode volume and flexible mechanics, a pair of coupled photonic crystal nanobeam (PCN) cavities are utilized in this paper to establish an optomechanical nanosystem, thus enabling strong optomechanical coupling effects. In coupled PCN cavities, one nanobeam with a mass m<sub>eff</sub>~3 pg works as an in-plane movable mechanical oscillator at a fundamental frequency of <inline-formula>π<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="sans-serif">Ω</mi><mi mathvariant="normal">m</mi></msub><mrow><mo>/</mo><mn>2</mn><mi mathvariant="sans-serif">π</mi><mo>=</mo><mn>4.148</mn></mrow><mrow><mo> </mo><mi>MHz</mi></mrow></mrow></semantics></math></inline-formula>. The other nanobeam couples light to excite optical fundamental supermodes at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1542.858</mn></mrow></semantics></math></inline-formula> and 1554.464 nm with a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">Q</mi><mi mathvariant="normal">o</mi></msub></mrow></semantics></math></inline-formula> larger than 4 × 10<sup>4</sup>. Because of the optomechanical backaction arising from an optical force, abundant optomechanical phenomena in the unresolved sideband are observed in the movable nanobeam. Moreover, benefiting from the in-plane movement of the flexible nanobeam, we achieved a maximum displacement of the movable nanobeam as 1468 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mi>fm</mi><mo>/</mo><mi>Hz</mi></mrow></mrow><mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></mrow></msup></mrow></semantics></math></inline-formula>. These characteristics indicate that this optomechanical nanocavity is capable of ultrasensitive motion measurements.https://www.mdpi.com/2073-4352/11/5/462photonic crystal nanobeamoptomechanical couplingoptical forcedisplacement sensitivity
spellingShingle Ji Xia
Fuyin Wang
Chunyan Cao
Zhengliang Hu
Heng Yang
Shuidong Xiong
A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing
Crystals
photonic crystal nanobeam
optomechanical coupling
optical force
displacement sensitivity
title A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing
title_full A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing
title_fullStr A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing
title_full_unstemmed A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing
title_short A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing
title_sort nanoscale photonic crystal cavity optomechanical system for ultrasensitive motion sensing
topic photonic crystal nanobeam
optomechanical coupling
optical force
displacement sensitivity
url https://www.mdpi.com/2073-4352/11/5/462
work_keys_str_mv AT jixia ananoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing
AT fuyinwang ananoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing
AT chunyancao ananoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing
AT zhenglianghu ananoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing
AT hengyang ananoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing
AT shuidongxiong ananoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing
AT jixia nanoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing
AT fuyinwang nanoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing
AT chunyancao nanoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing
AT zhenglianghu nanoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing
AT hengyang nanoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing
AT shuidongxiong nanoscalephotoniccrystalcavityoptomechanicalsystemforultrasensitivemotionsensing