Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPARγ-defective (P465L) mice
<p>Abstract</p> <p>Background</p> <p>The alveolar macrophage (AM) - first line of innate immune defence against pathogens and environmental irritants - constitutively expresses peroxisome-proliferator activated receptor γ (PPARγ). PPARγ ligand-induced activation keeps t...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2011-09-01
|
Series: | Particle and Fibre Toxicology |
Subjects: | |
Online Access: | http://www.particleandfibretoxicology.com/content/8/1/28 |
_version_ | 1818157341160243200 |
---|---|
author | Stoeger Tobias de Angelis Martin Rödel Heiko G Vidal-Puig Antonio Götz Alexander A |
author_facet | Stoeger Tobias de Angelis Martin Rödel Heiko G Vidal-Puig Antonio Götz Alexander A |
author_sort | Stoeger Tobias |
collection | DOAJ |
description | <p>Abstract</p> <p>Background</p> <p>The alveolar macrophage (AM) - first line of innate immune defence against pathogens and environmental irritants - constitutively expresses peroxisome-proliferator activated receptor γ (PPARγ). PPARγ ligand-induced activation keeps the AM quiescent, and thereby contributes to combat invaders and resolve inflammation by augmenting the phagocytosis of apoptotic neutrophils and inhibiting an excessive expression of inflammatory genes. Because of these presumed anti-inflammatory functions of PPARγ we tested the hypothesis, whether reduced functional receptor availability in mutant mice resulted in increased cellular and molecular inflammatory response during acute inflammation and/or in an impairment of its resolution.</p> <p>Methods</p> <p>To address this hypothesis we examined the effects of a carbon-nanoparticle (CNP) lung challenge, as surrogate for non-infectious environmental irritants, in a murine model carrying a dominant-negative point mutation in the ligand-binding domain of PPARγ (P465L/wt). Animals were instilled intratracheally with Printex 90 CNPs and bronchoalveolar lavage (BAL) was gained 24 h or 72 h after instillation to investigate its cellular and protein composition.</p> <p>Results</p> <p>Higher BAL cell numbers - due to higher macrophage counts - were found in mutants irrespective of treatment. Neutrophil numbers in contrast were slightly lower in mutants. Intratracheal CNP instillation resulted in a profound recruitment of inflammatory neutrophils into the alveolus, but genotype related differences at acute inflammation (24 h) and resolution (72 h) were not observed. There were no signs for increased alveolar-capillary membrane damage or necrotic cell death in mutants as determined by BAL protein and lactate-dehydrogenase content. Pro-inflammatory macrophage-derived cytokine osteopontin was higher, but galectin-3 lower in female mutants. CXCL5 and lipocalin-2 markers, attributed to epithelial cell stimulation did not differ.</p> <p>Conclusions</p> <p>Despite general genotype-related differences, we had to reject our hypothesis of an increased CNP induced lung inflammation and an impairment of its resolution in PPARγ defective mice. Although earlier studies showed ligand-induced activation of nuclear receptor PPARγ to promote resolution of lung inflammation, its reduced activity did not provide signs of resolution impairment in the settings investigated here.</p> |
first_indexed | 2024-12-11T15:12:39Z |
format | Article |
id | doaj.art-c8b1c17a936a4c9c8164d38aedaa6d8b |
institution | Directory Open Access Journal |
issn | 1743-8977 |
language | English |
last_indexed | 2024-12-11T15:12:39Z |
publishDate | 2011-09-01 |
publisher | BMC |
record_format | Article |
series | Particle and Fibre Toxicology |
spelling | doaj.art-c8b1c17a936a4c9c8164d38aedaa6d8b2022-12-22T01:00:43ZengBMCParticle and Fibre Toxicology1743-89772011-09-01812810.1186/1743-8977-8-28Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPARγ-defective (P465L) miceStoeger Tobiasde Angelis MartinRödel Heiko GVidal-Puig AntonioGötz Alexander A<p>Abstract</p> <p>Background</p> <p>The alveolar macrophage (AM) - first line of innate immune defence against pathogens and environmental irritants - constitutively expresses peroxisome-proliferator activated receptor γ (PPARγ). PPARγ ligand-induced activation keeps the AM quiescent, and thereby contributes to combat invaders and resolve inflammation by augmenting the phagocytosis of apoptotic neutrophils and inhibiting an excessive expression of inflammatory genes. Because of these presumed anti-inflammatory functions of PPARγ we tested the hypothesis, whether reduced functional receptor availability in mutant mice resulted in increased cellular and molecular inflammatory response during acute inflammation and/or in an impairment of its resolution.</p> <p>Methods</p> <p>To address this hypothesis we examined the effects of a carbon-nanoparticle (CNP) lung challenge, as surrogate for non-infectious environmental irritants, in a murine model carrying a dominant-negative point mutation in the ligand-binding domain of PPARγ (P465L/wt). Animals were instilled intratracheally with Printex 90 CNPs and bronchoalveolar lavage (BAL) was gained 24 h or 72 h after instillation to investigate its cellular and protein composition.</p> <p>Results</p> <p>Higher BAL cell numbers - due to higher macrophage counts - were found in mutants irrespective of treatment. Neutrophil numbers in contrast were slightly lower in mutants. Intratracheal CNP instillation resulted in a profound recruitment of inflammatory neutrophils into the alveolus, but genotype related differences at acute inflammation (24 h) and resolution (72 h) were not observed. There were no signs for increased alveolar-capillary membrane damage or necrotic cell death in mutants as determined by BAL protein and lactate-dehydrogenase content. Pro-inflammatory macrophage-derived cytokine osteopontin was higher, but galectin-3 lower in female mutants. CXCL5 and lipocalin-2 markers, attributed to epithelial cell stimulation did not differ.</p> <p>Conclusions</p> <p>Despite general genotype-related differences, we had to reject our hypothesis of an increased CNP induced lung inflammation and an impairment of its resolution in PPARγ defective mice. Although earlier studies showed ligand-induced activation of nuclear receptor PPARγ to promote resolution of lung inflammation, its reduced activity did not provide signs of resolution impairment in the settings investigated here.</p>http://www.particleandfibretoxicology.com/content/8/1/28peroxisome-proliverator activated receptor γcarbon-nano particlepulmonary inflammationchronic lung diseasechallengeimmune cellbroncho-alveolar lavage (BAL)inflammatory marker |
spellingShingle | Stoeger Tobias de Angelis Martin Rödel Heiko G Vidal-Puig Antonio Götz Alexander A Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPARγ-defective (P465L) mice Particle and Fibre Toxicology peroxisome-proliverator activated receptor γ carbon-nano particle pulmonary inflammation chronic lung disease challenge immune cell broncho-alveolar lavage (BAL) inflammatory marker |
title | Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPARγ-defective (P465L) mice |
title_full | Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPARγ-defective (P465L) mice |
title_fullStr | Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPARγ-defective (P465L) mice |
title_full_unstemmed | Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPARγ-defective (P465L) mice |
title_short | Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPARγ-defective (P465L) mice |
title_sort | carbon nanoparticle triggered acute lung inflammation and its resolution are not altered in pparγ defective p465l mice |
topic | peroxisome-proliverator activated receptor γ carbon-nano particle pulmonary inflammation chronic lung disease challenge immune cell broncho-alveolar lavage (BAL) inflammatory marker |
url | http://www.particleandfibretoxicology.com/content/8/1/28 |
work_keys_str_mv | AT stoegertobias carbonnanoparticletriggeredacutelunginflammationanditsresolutionarenotalteredinppargdefectivep465lmice AT deangelismartin carbonnanoparticletriggeredacutelunginflammationanditsresolutionarenotalteredinppargdefectivep465lmice AT rodelheikog carbonnanoparticletriggeredacutelunginflammationanditsresolutionarenotalteredinppargdefectivep465lmice AT vidalpuigantonio carbonnanoparticletriggeredacutelunginflammationanditsresolutionarenotalteredinppargdefectivep465lmice AT gotzalexandera carbonnanoparticletriggeredacutelunginflammationanditsresolutionarenotalteredinppargdefectivep465lmice |