A Novel Integrated Topology to Interface Electric Vehicles and Renewable Energies with the Grid

Electric Vehicles (EVs) are an alternative to internal combustion engine cars to reduce the environmental impact of transportation. It is common to use several power sources to achieve the requirements of the electric motor. A proper power converter and an accurate control strategy need to be utiliz...

Full description

Bibliographic Details
Main Authors: Alfredo Alvarez-Diazcomas, Héctor López, Roberto V. Carrillo-Serrano, Juvenal Rodríguez-Reséndiz, Nimrod Vázquez, Gilberto Herrera-Ruiz
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/21/4091
Description
Summary:Electric Vehicles (EVs) are an alternative to internal combustion engine cars to reduce the environmental impact of transportation. It is common to use several power sources to achieve the requirements of the electric motor. A proper power converter and an accurate control strategy need to be utilized to take advantage of the characteristics of every source. In this paper is presented a novel topology of a multiple-input bidirectional DC-DC power converter to interface two or more sources of energy with different voltage levels. Furthermore, it can be used as a buck or a boost in any of the possible conversion of energy. It is also possible to independently control the extracted power in each source and any combination of the elements of the system can be used as source and destiny for a transfer. Finally, the interaction with the grid is possible. The operation, analysis and design of the converter are presented with different modes of power transfer. Simulation results are shown where the theoretical analysis of the converter is validated.
ISSN:1996-1073