Porphyrin grafted magnetic nanopaticles as an eco-friendly, cost-effective catalyst for green oxidation of sulfides by meta-Chloro peroxy benzoic acid
In this paper, meso-Tetraphenylporphyrin iron(III) chloride complex, Fe(TPP)Cl, supported on magnetic nanoparticles (PCMNPs) was synthesized and characterized by HRTEM, SEM, TGA, and FT-IR and VSM. The value of saturation magnetic moments of MNPs and PCMNPs are 68.5 and 60.3 emu/g, respectively. The...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nanoscience and Nanotechnology Research Center, University of Kashan
2019-01-01
|
Series: | Journal of Nanostructures |
Subjects: | |
Online Access: | http://jns.kashanu.ac.ir/article_82550_b8f2b7571c391d9b9033b182ce2b5a64.pdf |
Summary: | In this paper, meso-Tetraphenylporphyrin iron(III) chloride complex, Fe(TPP)Cl, supported on magnetic nanoparticles (PCMNPs) was synthesized and characterized by HRTEM, SEM, TGA, and FT-IR and VSM. The value of saturation magnetic moments of MNPs and PCMNPs are 68.5 and 60.3 emu/g, respectively. The SEM and HRTEM image were shown the uniformity and spherical-like morphology of nanoparticles with an average diameter from ∼55 to 65 and and15 ± _5 nm, respectively The synthesized catalyst was successfully applied as a magnetically recoverable heterogeneous catalyst in oxidation of sulfides to related sulfoxides in water/ethanol as green solvents by meta-Chloro peroxy benzoic acid (m-CPBA). The selectivity and chemoselectivity of this clean system were attracted so much attention. No surfactants, additives, toxic reagents or organic solvents and by-product were involved. The maximum conversion and selectivity were attained at around neutral pH, which is advantageous for full-scale application. Ten successive cycles of catalyst was shown that the catalyst was most strongly anchored to the magnetic nanoparticles. |
---|---|
ISSN: | 2251-7871 2251-788X |