Penrose Process: Its Variants and Astrophysical Applications

We present a review of the Penrose process and its modifications in relation to the Kerr black holes and naked singularities (superspinars). We introduce the standard variant of this process, its magnetic version connected with magnetized Kerr black holes or naked singularities, the electric variant...

Full description

Bibliographic Details
Main Authors: Zdeněk Stuchlík, Martin Kološ, Arman Tursunov
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/7/11/416
Description
Summary:We present a review of the Penrose process and its modifications in relation to the Kerr black holes and naked singularities (superspinars). We introduce the standard variant of this process, its magnetic version connected with magnetized Kerr black holes or naked singularities, the electric variant related to electrically charged Schwarzschild black holes, and the radiative Penrose process connected with charged particles radiating in the ergosphere of magnetized Kerr black holes or naked singularities. We discuss the astrophysical implications of the variants of the Penrose process, concentrating attention to the extreme regime of the magnetic Penrose process leading to extremely large acceleration of charged particles up to ultra-high energy <i>E</i>∼<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>22</mn></msup></semantics></math></inline-formula> eV around magnetized supermassive black holes with mass <i>M</i>∼<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>10</mn></msup></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mo>⊙</mo></msub></semantics></math></inline-formula> and magnetic intensity <i>B</i>∼<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>4</mn></msup></semantics></math></inline-formula> G. Similarly high energies can be obtained by the electric Penrose process. The extraordinary case is represented by the radiative Penrose process that can occur only around magnetized Kerr spacetimes but just inside their ergosphere, in contrast to the magnetic Penrose process that can occur in a more extended effective ergosphere determined by the intensity of the electromagnetic interaction. The explanation is simple, as the radiative Penrose process is closely related to radiated photons with negative energy whose existence is limited just to the ergosphere.
ISSN:2218-1997