Reactive Transport Modeling of Chemical Stimulation Processes for an Enhanced Geothermal System (EGS)

<span style="color: windowtext;"></span>An enhanced geothermal system is a kind of artificial geothermal system, which can economically exploit geothermal energy from deep thermal rock mass with low permeability by artificially created geothermal reservoirs. Chemical stimulatio...

Full description

Bibliographic Details
Main Authors: Li Ma, Zhenpeng Cui, Bo Feng, Xiaofei Qi, Yuandong Zhao, Chaoyu Zhang
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/17/6229
Description
Summary:<span style="color: windowtext;"></span>An enhanced geothermal system is a kind of artificial geothermal system, which can economically exploit geothermal energy from deep thermal rock mass with low permeability by artificially created geothermal reservoirs. Chemical stimulation refers to a reservoir permeability enhancement method that injects a chemical stimulant into the fractured geothermal reservoir to improve the formation permeability by dissolving minerals. In this study, a reactive solute transport model was established based on TOUGHREACT to find out the effect of chemical stimulation on the reconstruction of a granite-hosted enhanced geothermal system reservoir. The results show that chemical stimulation with mud acid as a stimulant can effectively improve the permeability of fractures near the injection well, the effective penetration distance can reach more than 20 m after 5 days. The improvement of porosity and permeability was mainly caused by the dissolution of feldspar and chlorite. The permeability enhancement increased with the injection flow rate and HF concentration in the stimulant, which was weakly affected by the change in injection temperature. The method of chemical enhancement processes can provide a reference for subsequent enhanced geothermal system engineering designs.
ISSN:1996-1073