A New Method for Precision Measurement of Wall-Thickness of Thin-Walled Spherical Shell Parts

Thin-walled parts are widely used in shock wave and detonation physics experiments, which require high surface accuracy and equal thickness. In order to obtain the wall thickness of thin-walled spherical shell parts accurately, a new measurement method is proposed. The trajectories, including meridi...

Full description

Bibliographic Details
Main Authors: Jiang Guo, Yongbo Xu, Bo Pan, Juntao Zhang, Renke Kang, Wen Huang, Dongxing Du
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/12/5/467
Description
Summary:Thin-walled parts are widely used in shock wave and detonation physics experiments, which require high surface accuracy and equal thickness. In order to obtain the wall thickness of thin-walled spherical shell parts accurately, a new measurement method is proposed. The trajectories, including meridian and concentric trajectories, are employed to measure the thickness of thin-walled spherical shell parts. The measurement data of the inner and outer surfaces are unified in the same coordinate system, and the thickness is obtained based on a reconstruction model. The meridian and concentric circles’ trajectories are used for measuring a spherical shell with an outer diameter of Φ210.6 mm and an inner diameter of Φ206.4 mm. Without the data in the top area, the surface errors of the outer and inner surfaces are about 5 μm and 6 μm, respectively, and the wall-thickness error is about 8 μm with the meridian trajectory.
ISSN:2072-666X