Genetic analysis of longevity and their associations with fertility traits in Holstein cattle

The increase of longevity is intended to reduce involuntary culling rates, not extend the life span, and it reflects the ability of animals to successfully cope with the environment and disease during production. Sire model, animal model and repeatability animal models were used to estimate the (co)...

Full description

Bibliographic Details
Main Authors: H.H. Hu, F. Li, T. Mu, L.Y. Han, X.F. Feng, Y.F. Ma, Y. Jiang, X.S. Xue, B.Q. Du, R.R. Li, Y. Ma
Format: Article
Language:English
Published: Elsevier 2023-06-01
Series:Animal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1751731123001477
Description
Summary:The increase of longevity is intended to reduce involuntary culling rates, not extend the life span, and it reflects the ability of animals to successfully cope with the environment and disease during production. Sire model, animal model and repeatability animal models were used to estimate the (co) variance components of longevity and fertility traits. Six longevity and thirteen fertility traits were analysed, including herd life (HL), productive life (PL), number of days between first calving and the end of first lactation or culling (L1); number of days between first calving and the end of the second lactation or culling (L2); number of days between first calving and the end of the third lactation or culling (L3); number of days between first calving and the end of the fourth lactation or culling (L4); age at first service, age at first calving (AFC), the interval from first to last inseminations in heifer (IFLh), conception rate of first insemination in heifer, days open (DO), calving interval, gestation length, interval from calving to first insemination (ICF), interval from first to last inseminations in cow (IFLc), conception rate of first insemination in cow, calving ease (CE), birth weight, and calf survival. The estimated heritabilities (±SE) were 0.018 (±0.003), 0.015 (±0.003), 0.049 (±0.004), 0.025 (±0.003), 0.009 (±0.002) and 0.011 (±0.002) for HL, PL, L1, L2, L3 and L4, respectively. Strong correlations were appeared in HL and PL; the genetic and phenotypic correlation coefficients were 0.998 and 0.985, respectively. There were high genetic and phenotypic correlations which were observed in L1 and L2, L2 and L3, L3 and L4, respectively. All fertility traits of heifer showed medium to high heritability, while the cow showed low heritability. All heifer fertility traits had low genetic associations with longevity traits, ranging from −0.018 (L2 and IFLh) to 0.257 (L3 and AFC). Most of the fertility traits showed negative correlations with longevity traits in different parities, and we recommend DO, ICF, IFLc and CE as indirect indicators of longevity traits in dairy cows, but we also need to take into account the differences between parities.
ISSN:1751-7311