Periodic solutions of relativistic Liénard-type equations

In this paper, we prove that the relativistic Liénard-type equation \begin{equation*} \begin{split} \frac{d}{dt}\left(\frac{\dot{x}\left\vert \dot{x} \right\vert ^{p-2}}{\big( 1-\left\vert \dot{x}\right\vert ^{p}\big) ^{\frac{p-1}{p}}}\right) +f\left( x\right) \dot{x} +g\left( x\right) =0 \text{,}\q...

Full description

Bibliographic Details
Main Author: Mustafa Aktas
Format: Article
Language:English
Published: University of Szeged 2020-06-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8047
_version_ 1797830535769227264
author Mustafa Aktas
author_facet Mustafa Aktas
author_sort Mustafa Aktas
collection DOAJ
description In this paper, we prove that the relativistic Liénard-type equation \begin{equation*} \begin{split} \frac{d}{dt}\left(\frac{\dot{x}\left\vert \dot{x} \right\vert ^{p-2}}{\big( 1-\left\vert \dot{x}\right\vert ^{p}\big) ^{\frac{p-1}{p}}}\right) +f\left( x\right) \dot{x} +g\left( x\right) =0 \text{,}\qquad p>1, \end{split} \end{equation*} and its special case, relativistic Van der Pol-type equation, have a periodic solution. Our results are inspired by the results obtained by Mawhin and Villari [Nonlinear Anal. 160(2017), 16–24] and extend their results to this more general case.
first_indexed 2024-04-09T13:37:40Z
format Article
id doaj.art-c8f3de57ae9d4f9390c3611110a532f0
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:37:40Z
publishDate 2020-06-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-c8f3de57ae9d4f9390c3611110a532f02023-05-09T07:53:10ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752020-06-0120203811210.14232/ejqtde.2020.1.388047Periodic solutions of relativistic Liénard-type equationsMustafa Aktas0Gazi University, Ankara, TurkeyIn this paper, we prove that the relativistic Liénard-type equation \begin{equation*} \begin{split} \frac{d}{dt}\left(\frac{\dot{x}\left\vert \dot{x} \right\vert ^{p-2}}{\big( 1-\left\vert \dot{x}\right\vert ^{p}\big) ^{\frac{p-1}{p}}}\right) +f\left( x\right) \dot{x} +g\left( x\right) =0 \text{,}\qquad p>1, \end{split} \end{equation*} and its special case, relativistic Van der Pol-type equation, have a periodic solution. Our results are inspired by the results obtained by Mawhin and Villari [Nonlinear Anal. 160(2017), 16–24] and extend their results to this more general case.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8047closed orbitsperiodic solutionslimit cyclesrelativistic liénard-type equations
spellingShingle Mustafa Aktas
Periodic solutions of relativistic Liénard-type equations
Electronic Journal of Qualitative Theory of Differential Equations
closed orbits
periodic solutions
limit cycles
relativistic liénard-type equations
title Periodic solutions of relativistic Liénard-type equations
title_full Periodic solutions of relativistic Liénard-type equations
title_fullStr Periodic solutions of relativistic Liénard-type equations
title_full_unstemmed Periodic solutions of relativistic Liénard-type equations
title_short Periodic solutions of relativistic Liénard-type equations
title_sort periodic solutions of relativistic lienard type equations
topic closed orbits
periodic solutions
limit cycles
relativistic liénard-type equations
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8047
work_keys_str_mv AT mustafaaktas periodicsolutionsofrelativisticlienardtypeequations