Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields

Let K be a finite extension of the p-adic field ${\mathbb {Q}}_p$ of degree d, let ${{\mathbb {F}}\,\!{}}$ be a finite field of characteristic p and let ${\overline {{D}}}$ be an n-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of K over the f...

Full description

Bibliographic Details
Main Authors: Gebhard Böckle, Ann-Kristin Juschka
Format: Article
Language:English
Published: Cambridge University Press 2023-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509423000828/type/journal_article
_version_ 1797614840686051328
author Gebhard Böckle
Ann-Kristin Juschka
author_facet Gebhard Böckle
Ann-Kristin Juschka
author_sort Gebhard Böckle
collection DOAJ
description Let K be a finite extension of the p-adic field ${\mathbb {Q}}_p$ of degree d, let ${{\mathbb {F}}\,\!{}}$ be a finite field of characteristic p and let ${\overline {{D}}}$ be an n-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of K over the field ${{\mathbb {F}}\,\!{}}$ . For the universal mod p pseudodeformation ring ${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$ of ${\overline {{D}}}$ , we prove the following: The ring $\overline R_{{\overline {{D}}}}^{\mathrm {ps}}$ is equidimensional of dimension $dn^2+1$ . Its reduced quotient ${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}},{\operatorname {red}}}}}$ contains a dense open subset of regular points x whose associated pseudocharacter ${D}_x$ is absolutely irreducible and nonspecial in a certain technical sense that we shall define. Moreover, we will characterize in most cases when K does not contain a p-th root of unity the singular locus of ${\mathrm {Spec}}\ {\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$ . Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring ${R{{\phantom {\overline {m}}}}^{\operatorname {univ}}_{{{\overline {D}}}}}$ of ${\overline {{D}}}$ .
first_indexed 2024-03-11T07:17:58Z
format Article
id doaj.art-c901560ab4944fe19d9ffa7c58971382
institution Directory Open Access Journal
issn 2050-5094
language English
last_indexed 2024-03-11T07:17:58Z
publishDate 2023-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj.art-c901560ab4944fe19d9ffa7c589713822023-11-17T08:11:57ZengCambridge University PressForum of Mathematics, Sigma2050-50942023-01-011110.1017/fms.2023.82Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fieldsGebhard Böckle0https://orcid.org/0000-0003-1758-1537Ann-Kristin Juschka1Universität Heidelberg, IWR and Institute of Mathematics, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany; E-mail: ,Universität Heidelberg, IWR and Institute of Mathematics, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany; E-mail: ,Let K be a finite extension of the p-adic field ${\mathbb {Q}}_p$ of degree d, let ${{\mathbb {F}}\,\!{}}$ be a finite field of characteristic p and let ${\overline {{D}}}$ be an n-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of K over the field ${{\mathbb {F}}\,\!{}}$ . For the universal mod p pseudodeformation ring ${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$ of ${\overline {{D}}}$ , we prove the following: The ring $\overline R_{{\overline {{D}}}}^{\mathrm {ps}}$ is equidimensional of dimension $dn^2+1$ . Its reduced quotient ${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}},{\operatorname {red}}}}}$ contains a dense open subset of regular points x whose associated pseudocharacter ${D}_x$ is absolutely irreducible and nonspecial in a certain technical sense that we shall define. Moreover, we will characterize in most cases when K does not contain a p-th root of unity the singular locus of ${\mathrm {Spec}}\ {\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$ . Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring ${R{{\phantom {\overline {m}}}}^{\operatorname {univ}}_{{{\overline {D}}}}}$ of ${\overline {{D}}}$ .https://www.cambridge.org/core/product/identifier/S2050509423000828/type/journal_article11F8011F8511F70
spellingShingle Gebhard Böckle
Ann-Kristin Juschka
Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields
Forum of Mathematics, Sigma
11F80
11F85
11F70
title Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields
title_full Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields
title_fullStr Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields
title_full_unstemmed Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields
title_short Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields
title_sort equidimensionality of universal pseudodeformation rings in characteristic p for absolute galois groups of p adic fields
topic 11F80
11F85
11F70
url https://www.cambridge.org/core/product/identifier/S2050509423000828/type/journal_article
work_keys_str_mv AT gebhardbockle equidimensionalityofuniversalpseudodeformationringsincharacteristicpforabsolutegaloisgroupsofpadicfields
AT annkristinjuschka equidimensionalityofuniversalpseudodeformationringsincharacteristicpforabsolutegaloisgroupsofpadicfields