Magnetic Sorbent for the Removal of Selenium(IV) from Simulated Industrial Wastewaters: Determination of Column Kinetic Parameters

A novel meso- and microporous tire-derived-carbon support with magnetic iron oxide nanoparticle adsorbents that selectively adsorbs Se(IV) ions from simulated contaminated water has been developed. In this work, the physicochemical characteristics of the composite adsorbent are characterized with re...

Full description

Bibliographic Details
Main Authors: Andrew Ying, Samuel F. Evans, Costas Tsouris, M. Parans Paranthaman
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/12/5/1234
Description
Summary:A novel meso- and microporous tire-derived-carbon support with magnetic iron oxide nanoparticle adsorbents that selectively adsorbs Se(IV) ions from simulated contaminated water has been developed. In this work, the physicochemical characteristics of the composite adsorbent are characterized with respect to porosity and surface area, chemical composition, and microstructure morphology. The kinetics of this composite adsorbent in a fixed-bed setting has been determined. Several column runs were conducted and analyzed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) to determine the concentration gradient vs time. These results were then fit to a pseudo-second order rate law to obtain equilibrium values. Combining calculated equilibrium values with effluent concentration data, enabled the application of the Adams–Bohart model to determine reaction constants and column coefficients. Column parameters obtained from different flow rates and fittings of the Adams–Bohart model were remarkably consistent. These findings enable the application of this sorbent to fixed-bed column systems and opens up further research into mixed pollutants tests with real wastewater and scaling of selenium pollutant removal.
ISSN:2073-4441