Elliptic problems with singular nonlinearities of indefinite sign
Let $\Omega$ be a bounded domain in $\mathbb{R}^n$ with $C^{1,1}$ boundary. We consider problems of the form $-\Delta u=\chi_{\left\{ u>0\right\}}\left( au^{-\alpha}-g\left( .,u\right) \right) $ in $\Omega,$ $u=0$ on $\partial\Omega,$ $u\geq0$ in $\Omega,$ where $\Omega$ is a bounded dom...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2020-02-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/10.3934/math.2020120/fulltext.html |
_version_ | 1818410024119042048 |
---|---|
author | Tomas Godoy |
author_facet | Tomas Godoy |
author_sort | Tomas Godoy |
collection | DOAJ |
description | Let $\Omega$ be a bounded domain in $\mathbb{R}^n$ with $C^{1,1}$ boundary. We consider problems of the form $-\Delta u=\chi_{\left\{ u>0\right\}}\left( au^{-\alpha}-g\left( .,u\right) \right) $ in $\Omega,$ $u=0$ on $\partial\Omega,$ $u\geq0$ in $\Omega,$ where $\Omega$ is a bounded domain in $\mathbb{R}^n$, $0\not \equiv a\in L^{\infty}\left( \Omega\right) ,$ $\alpha\in\left( 0,1\right) ,$ and $g:\Omega\times\left[ 0,\infty\right) \rightarrow\mathbb{R}$ is a nonnegative Carathéodory function. We prove, under suitable assumptions on $a$ and $g,$ the existence of nontrivial and nonnegative weak solutions $u\in H_{0}^{1}\left( \Omega\right) \cap L^{\infty}\left( \Omega\right) $ of the stated problem. Under additional assumptions, the positivity, $a.e.$ in $\Omega,$ of the found solution $u$, is also proved. |
first_indexed | 2024-12-14T10:08:56Z |
format | Article |
id | doaj.art-c92a231cc0b742fb848b80ee9c52405d |
institution | Directory Open Access Journal |
issn | 2473-6988 |
language | English |
last_indexed | 2024-12-14T10:08:56Z |
publishDate | 2020-02-01 |
publisher | AIMS Press |
record_format | Article |
series | AIMS Mathematics |
spelling | doaj.art-c92a231cc0b742fb848b80ee9c52405d2022-12-21T23:07:04ZengAIMS PressAIMS Mathematics2473-69882020-02-01531779179810.3934/math.2020120Elliptic problems with singular nonlinearities of indefinite signTomas Godoy0Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba, ArgentinaLet $\Omega$ be a bounded domain in $\mathbb{R}^n$ with $C^{1,1}$ boundary. We consider problems of the form $-\Delta u=\chi_{\left\{ u>0\right\}}\left( au^{-\alpha}-g\left( .,u\right) \right) $ in $\Omega,$ $u=0$ on $\partial\Omega,$ $u\geq0$ in $\Omega,$ where $\Omega$ is a bounded domain in $\mathbb{R}^n$, $0\not \equiv a\in L^{\infty}\left( \Omega\right) ,$ $\alpha\in\left( 0,1\right) ,$ and $g:\Omega\times\left[ 0,\infty\right) \rightarrow\mathbb{R}$ is a nonnegative Carathéodory function. We prove, under suitable assumptions on $a$ and $g,$ the existence of nontrivial and nonnegative weak solutions $u\in H_{0}^{1}\left( \Omega\right) \cap L^{\infty}\left( \Omega\right) $ of the stated problem. Under additional assumptions, the positivity, $a.e.$ in $\Omega,$ of the found solution $u$, is also proved.https://www.aimspress.com/article/10.3934/math.2020120/fulltext.htmlsingular elliptic problemsnonnegative solutionssub and supersolutions |
spellingShingle | Tomas Godoy Elliptic problems with singular nonlinearities of indefinite sign AIMS Mathematics singular elliptic problems nonnegative solutions sub and supersolutions |
title | Elliptic problems with singular nonlinearities of indefinite sign |
title_full | Elliptic problems with singular nonlinearities of indefinite sign |
title_fullStr | Elliptic problems with singular nonlinearities of indefinite sign |
title_full_unstemmed | Elliptic problems with singular nonlinearities of indefinite sign |
title_short | Elliptic problems with singular nonlinearities of indefinite sign |
title_sort | elliptic problems with singular nonlinearities of indefinite sign |
topic | singular elliptic problems nonnegative solutions sub and supersolutions |
url | https://www.aimspress.com/article/10.3934/math.2020120/fulltext.html |
work_keys_str_mv | AT tomasgodoy ellipticproblemswithsingularnonlinearitiesofindefinitesign |