An ensemble learning method for low visibility prediction on freeway using meteorological data

Abstract The prediction of low visibility is essential for proactive traffic safety management on freeways under fog conditions. However, few studies have developed prediction models for visibility on freeways at a short‐term time interval. This study proposes an ensemble learning approach to develo...

Full description

Bibliographic Details
Main Authors: Ben Zhai, Yanli Wang, Bing Wu
Format: Article
Language:English
Published: Wiley 2023-11-01
Series:IET Intelligent Transport Systems
Subjects:
Online Access:https://doi.org/10.1049/itr2.12404
Description
Summary:Abstract The prediction of low visibility is essential for proactive traffic safety management on freeways under fog conditions. However, few studies have developed prediction models for visibility on freeways at a short‐term time interval. This study proposes an ensemble learning approach to develop a short‐term prediction model of low visibility on freeways using meteorological data. Spearman's rank correlation coefficient is used to select meteorological variables related to low visibility. Random forests (RF) and extreme gradient boosting (XGB) are employed to develop visibility prediction models, and back propagation neural network (BPNN) and logistic regression (LR) are used for comparison. The models are evaluated over five prediction time intervals (5, 10, 15, 30, and 60 min). The results indicate that the RF models outperform the other models with precision of 73.9%, recall of 59.8% and F1 score of 0.65. Moreover, the prediction model with a 15‐min time interval shows better performance. With the proposed short‐term prediction of low visibility, it is expected that more crashes could be prevented with more appropriate proactive traffic safety management strategies.
ISSN:1751-956X
1751-9578