A Closed-Form Parametrization and an Alternative Computational Algorithm for Approximating Slices of Minkowski Sums of Ellipsoids in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>3</mn></msup></semantics></math></inline-formula>

The current work aims to develop an approximation of the slice of a Minkowski sum of finite number of ellipsoids, sliced up by an arbitrarily oriented plane in Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semant...

Full description

Bibliographic Details
Main Author: Amirreza Fahim Golestaneh
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/1/137
_version_ 1797406799429632000
author Amirreza Fahim Golestaneh
author_facet Amirreza Fahim Golestaneh
author_sort Amirreza Fahim Golestaneh
collection DOAJ
description The current work aims to develop an approximation of the slice of a Minkowski sum of finite number of ellipsoids, sliced up by an arbitrarily oriented plane in Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>3</mn></msup></semantics></math></inline-formula> that, to the best of the author’s knowledge, has not been addressed yet. This approximation of the actual slice is in a closed form of an explicit parametric equation in the case that the slice is not passing through the zones of the Minkowski surface with high curvatures, namely the “corners”. An alternative computational algorithm is introduced for the cases that the plane slices the corners, in which a family of ellipsoidal inner and outer bounds of the Minkowski sum is used to construct a “narrow strip” for the actual slice of Minkowski sum. This strip can narrow persistently for a few more number of constructing bounds to precisely coincide on the actual slice of Minkowski sum. This algorithm is also applicable to the cases with high aspect ratio of ellipsoids. In line with the main goal, some ellipsoidal inner and outer bounds and approximations are discussed, including the so-called “Kurzhanski’s” bounds, which can be used to formulate the approximation of the slice of Minkowski sum.
first_indexed 2024-03-09T03:31:50Z
format Article
id doaj.art-c93c4996eb39404c96e2959bb2951a72
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T03:31:50Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-c93c4996eb39404c96e2959bb2951a722023-12-03T14:54:50ZengMDPI AGMathematics2227-73902022-12-0111113710.3390/math11010137A Closed-Form Parametrization and an Alternative Computational Algorithm for Approximating Slices of Minkowski Sums of Ellipsoids in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>3</mn></msup></semantics></math></inline-formula>Amirreza Fahim Golestaneh0Department of Mechanical Engineering, National University of Singapore, Singapore 117575, SingaporeThe current work aims to develop an approximation of the slice of a Minkowski sum of finite number of ellipsoids, sliced up by an arbitrarily oriented plane in Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>3</mn></msup></semantics></math></inline-formula> that, to the best of the author’s knowledge, has not been addressed yet. This approximation of the actual slice is in a closed form of an explicit parametric equation in the case that the slice is not passing through the zones of the Minkowski surface with high curvatures, namely the “corners”. An alternative computational algorithm is introduced for the cases that the plane slices the corners, in which a family of ellipsoidal inner and outer bounds of the Minkowski sum is used to construct a “narrow strip” for the actual slice of Minkowski sum. This strip can narrow persistently for a few more number of constructing bounds to precisely coincide on the actual slice of Minkowski sum. This algorithm is also applicable to the cases with high aspect ratio of ellipsoids. In line with the main goal, some ellipsoidal inner and outer bounds and approximations are discussed, including the so-called “Kurzhanski’s” bounds, which can be used to formulate the approximation of the slice of Minkowski sum.https://www.mdpi.com/2227-7390/11/1/137slice of Minkowski sumellipsoidsclosed-form parametrizationapproximationcomputational algorithmKurzhanski’s bounds
spellingShingle Amirreza Fahim Golestaneh
A Closed-Form Parametrization and an Alternative Computational Algorithm for Approximating Slices of Minkowski Sums of Ellipsoids in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>3</mn></msup></semantics></math></inline-formula>
Mathematics
slice of Minkowski sum
ellipsoids
closed-form parametrization
approximation
computational algorithm
Kurzhanski’s bounds
title A Closed-Form Parametrization and an Alternative Computational Algorithm for Approximating Slices of Minkowski Sums of Ellipsoids in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>3</mn></msup></semantics></math></inline-formula>
title_full A Closed-Form Parametrization and an Alternative Computational Algorithm for Approximating Slices of Minkowski Sums of Ellipsoids in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>3</mn></msup></semantics></math></inline-formula>
title_fullStr A Closed-Form Parametrization and an Alternative Computational Algorithm for Approximating Slices of Minkowski Sums of Ellipsoids in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>3</mn></msup></semantics></math></inline-formula>
title_full_unstemmed A Closed-Form Parametrization and an Alternative Computational Algorithm for Approximating Slices of Minkowski Sums of Ellipsoids in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>3</mn></msup></semantics></math></inline-formula>
title_short A Closed-Form Parametrization and an Alternative Computational Algorithm for Approximating Slices of Minkowski Sums of Ellipsoids in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>3</mn></msup></semantics></math></inline-formula>
title_sort closed form parametrization and an alternative computational algorithm for approximating slices of minkowski sums of ellipsoids in inline formula math display inline semantics msup mi mathvariant double struck r mi mn 3 mn msup semantics math inline formula
topic slice of Minkowski sum
ellipsoids
closed-form parametrization
approximation
computational algorithm
Kurzhanski’s bounds
url https://www.mdpi.com/2227-7390/11/1/137
work_keys_str_mv AT amirrezafahimgolestaneh aclosedformparametrizationandanalternativecomputationalalgorithmforapproximatingslicesofminkowskisumsofellipsoidsininlineformulamathdisplayinlinesemanticsmsupmimathvariantdoublestruckrmimn3mnmsupsemanticsmathinlineformula
AT amirrezafahimgolestaneh closedformparametrizationandanalternativecomputationalalgorithmforapproximatingslicesofminkowskisumsofellipsoidsininlineformulamathdisplayinlinesemanticsmsupmimathvariantdoublestruckrmimn3mnmsupsemanticsmathinlineformula