Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform

Abstract Recent advancements in integrated soliton microcombs open the route to a wide range of chip-based communication, sensing, and metrology applications. The technology translation from laboratory demonstrations to real-world applications requires the fabrication process of photonics chips to b...

Full description

Bibliographic Details
Main Authors: Chengli Wang, Jin Li, Ailun Yi, Zhiwei Fang, Liping Zhou, Zhe Wang, Rui Niu, Yang Chen, Jiaxiang Zhang, Ya Cheng, Junqiu Liu, Chun-Hua Dong, Xin Ou
Format: Article
Language:English
Published: Nature Publishing Group 2022-12-01
Series:Light: Science & Applications
Online Access:https://doi.org/10.1038/s41377-022-01042-w
Description
Summary:Abstract Recent advancements in integrated soliton microcombs open the route to a wide range of chip-based communication, sensing, and metrology applications. The technology translation from laboratory demonstrations to real-world applications requires the fabrication process of photonics chips to be fully CMOS-compatible, such that the manufacturing can take advantage of the ongoing evolution of semiconductor technology at reduced cost and with high volume. Silicon nitride has become the leading CMOS platform for integrated soliton devices, however, it is an insulator and lacks intrinsic second-order nonlinearity for electro-optic modulation. Other materials have emerged such as AlN, LiNbO3, AlGaAs and GaP that exhibit simultaneous second- and third-order nonlinearities. Here, we show that silicon carbide (SiC) -- already commercially deployed in nearly ubiquitous electrical power devices such as RF electronics, MOSFET, and MEMS due to its wide bandgap properties, excellent mechanical properties, piezoelectricity and chemical inertia -- is a new competitive CMOS-compatible platform for nonlinear photonics. High-quality-factor microresonators (Q = 4 × 106) are fabricated on 4H-SiC-on-insulator thin films, where a single soliton microcomb is generated. In addition, we observe wide spectral translation of chaotic microcombs from near-infrared to visible due to the second-order nonlinearity of SiC. Our work highlights the prospects of SiC for future low-loss integrated nonlinear and quantum photonics that could harness electro-opto-mechanical interactions on a monolithic platform.
ISSN:2047-7538