Summary: | New multiphase Wound-Field Doubly Salient Machines (WFDSMs) for electrical actuators with symmetric phases are investigated and compared in this paper. With a comparative study of the pole number and pole arc coefficient, the salient pole topology of the three-phase, four-phase, five-phase, and six-phase WFDSMs with little cogging torque is presented. A new winding configuration that can provide symmetrical phases for the multiphase WFDSMs is proposed. Suitable fault-tolerant converters for the multiphase WFDSM are presented. With the simulated results in terms of the pole topology, flux linkage, back EMF and converters, it can be concluded that the pole numbers of the new five-phase WFDSM are very large. The high accuracy position sensors should be required to make the five-phase WFDSM commutate frequently and accurately at a high speed. The four-phase and the six-phase WFDSM can be divided into two isolated channels, and both of them have a good performance as a fault-tolerant machine. All of the investigations are verified by finite element analysis results.
|