The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the Brain

Diagnosing normal-pressure hydrocephalus (NPH) via non-contrast computed tomography (CT) brain scans is presently a formidable task due to the lack of universally agreed-upon standards for radiographic parameter measurement. A variety of radiological parameters, such as Evans’ index, narrow sulci at...

Бүрэн тодорхойлолт

Номзүйн дэлгэрэнгүй
Үндсэн зохиолчид: Dittapong Songsaeng, Poonsuta Nava-apisak, Jittsupa Wongsripuemtet, Siripra Kingchan, Phuriwat Angkoondittaphong, Phattaranan Phawaphutanon, Akara Supratak
Формат: Өгүүллэг
Хэл сонгох:English
Хэвлэсэн: MDPI AG 2023-09-01
Цуврал:Diagnostics
Нөхцлүүд:
Онлайн хандалт:https://www.mdpi.com/2075-4418/13/17/2840
_version_ 1827728210268258304
author Dittapong Songsaeng
Poonsuta Nava-apisak
Jittsupa Wongsripuemtet
Siripra Kingchan
Phuriwat Angkoondittaphong
Phattaranan Phawaphutanon
Akara Supratak
author_facet Dittapong Songsaeng
Poonsuta Nava-apisak
Jittsupa Wongsripuemtet
Siripra Kingchan
Phuriwat Angkoondittaphong
Phattaranan Phawaphutanon
Akara Supratak
author_sort Dittapong Songsaeng
collection DOAJ
description Diagnosing normal-pressure hydrocephalus (NPH) via non-contrast computed tomography (CT) brain scans is presently a formidable task due to the lack of universally agreed-upon standards for radiographic parameter measurement. A variety of radiological parameters, such as Evans’ index, narrow sulci at high parietal convexity, Sylvian fissures’ dilation, focally enlarged sulci, and more, are currently measured by radiologists. This study aimed to enhance NPH diagnosis by comparing the accuracy, sensitivity, specificity, and predictive values of radiological parameters, as evaluated by radiologists and AI methods, utilizing cerebrospinal fluid volumetry. Results revealed a sensitivity of 77.14% for radiologists and 99.05% for AI, with specificities of 98.21% and 57.14%, respectively, in diagnosing NPH. Radiologists demonstrated NPV, PPV, and an accuracy of 82.09%, 97.59%, and 88.02%, while AI reported 98.46%, 68.42%, and 77.42%, respectively. ROC curves exhibited an area under the curve of 0.954 for radiologists and 0.784 for AI, signifying the diagnostic index for NPH. In conclusion, although radiologists exhibited superior sensitivity, specificity, and accuracy in diagnosing NPH, AI served as an effective initial screening mechanism for potential NPH cases, potentially easing the radiologists’ burden. Given the ongoing AI advancements, it is plausible that AI could eventually match or exceed radiologists’ diagnostic prowess in identifying hydrocephalus.
first_indexed 2024-03-10T23:26:10Z
format Article
id doaj.art-c9514f86a7934fbcae582eb49e79ff87
institution Directory Open Access Journal
issn 2075-4418
language English
last_indexed 2024-03-10T23:26:10Z
publishDate 2023-09-01
publisher MDPI AG
record_format Article
series Diagnostics
spelling doaj.art-c9514f86a7934fbcae582eb49e79ff872023-11-19T08:00:18ZengMDPI AGDiagnostics2075-44182023-09-011317284010.3390/diagnostics13172840The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the BrainDittapong Songsaeng0Poonsuta Nava-apisak1Jittsupa Wongsripuemtet2Siripra Kingchan3Phuriwat Angkoondittaphong4Phattaranan Phawaphutanon5Akara Supratak6Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, ThailandDepartment of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, ThailandDepartment of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, ThailandFaculty of Information and Communication Technology, Mahidol University, Salaya, Nakhon Pathom 73170, ThailandFaculty of Information and Communication Technology, Mahidol University, Salaya, Nakhon Pathom 73170, ThailandDepartment of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, ThailandFaculty of Information and Communication Technology, Mahidol University, Salaya, Nakhon Pathom 73170, ThailandDiagnosing normal-pressure hydrocephalus (NPH) via non-contrast computed tomography (CT) brain scans is presently a formidable task due to the lack of universally agreed-upon standards for radiographic parameter measurement. A variety of radiological parameters, such as Evans’ index, narrow sulci at high parietal convexity, Sylvian fissures’ dilation, focally enlarged sulci, and more, are currently measured by radiologists. This study aimed to enhance NPH diagnosis by comparing the accuracy, sensitivity, specificity, and predictive values of radiological parameters, as evaluated by radiologists and AI methods, utilizing cerebrospinal fluid volumetry. Results revealed a sensitivity of 77.14% for radiologists and 99.05% for AI, with specificities of 98.21% and 57.14%, respectively, in diagnosing NPH. Radiologists demonstrated NPV, PPV, and an accuracy of 82.09%, 97.59%, and 88.02%, while AI reported 98.46%, 68.42%, and 77.42%, respectively. ROC curves exhibited an area under the curve of 0.954 for radiologists and 0.784 for AI, signifying the diagnostic index for NPH. In conclusion, although radiologists exhibited superior sensitivity, specificity, and accuracy in diagnosing NPH, AI served as an effective initial screening mechanism for potential NPH cases, potentially easing the radiologists’ burden. Given the ongoing AI advancements, it is plausible that AI could eventually match or exceed radiologists’ diagnostic prowess in identifying hydrocephalus.https://www.mdpi.com/2075-4418/13/17/2840NPHradiologic markershydrocephalusAI
spellingShingle Dittapong Songsaeng
Poonsuta Nava-apisak
Jittsupa Wongsripuemtet
Siripra Kingchan
Phuriwat Angkoondittaphong
Phattaranan Phawaphutanon
Akara Supratak
The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the Brain
Diagnostics
NPH
radiologic markers
hydrocephalus
AI
title The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the Brain
title_full The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the Brain
title_fullStr The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the Brain
title_full_unstemmed The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the Brain
title_short The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the Brain
title_sort diagnostic accuracy of artificial intelligence in radiological markers of normal pressure hydrocephalus nph on non contrast ct scans of the brain
topic NPH
radiologic markers
hydrocephalus
AI
url https://www.mdpi.com/2075-4418/13/17/2840
work_keys_str_mv AT dittapongsongsaeng thediagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT poonsutanavaapisak thediagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT jittsupawongsripuemtet thediagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT siriprakingchan thediagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT phuriwatangkoondittaphong thediagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT phattarananphawaphutanon thediagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT akarasupratak thediagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT dittapongsongsaeng diagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT poonsutanavaapisak diagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT jittsupawongsripuemtet diagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT siriprakingchan diagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT phuriwatangkoondittaphong diagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT phattarananphawaphutanon diagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT akarasupratak diagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain