State of the Art in Textile Waste Management: A Review

Textile waste constitutes a significant fraction of municipal solid waste sent to landfill or incinerated. Its innovative management is important to enhance sustainability and circularity. This review aims to present the latest policies and the state-of-the-art technologies in the collection, sortin...

Full description

Bibliographic Details
Main Author: Kuok Ho Daniel Tang
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Textiles
Subjects:
Online Access:https://www.mdpi.com/2673-7248/3/4/27
Description
Summary:Textile waste constitutes a significant fraction of municipal solid waste sent to landfill or incinerated. Its innovative management is important to enhance sustainability and circularity. This review aims to present the latest policies and the state-of-the-art technologies in the collection, sorting and recycling of textile waste. Policies at global and regional levels are increasingly made to address the sustainability of the textile industry and integrate the concept of circular economy. They are crucial to driving changes and innovations in current textile waste management. The Internet of Things, big data, blockchain and smart contracts have been proposed to improve transparency, traceability and accountability in the textile waste collection process. They optimize collection routes, and transactions and agreements among stakeholders. The sorting of textile waste using near-infrared spectroscopy, optical sorting and artificial intelligence enables its separation based on composition, color and quality. The mechanical recycling of textiles regenerates fibers with the same or different applications from those of the original fabrics. Fibers have been used for making building and slope protection materials. Chemical recycling depolymerizes waste textiles using chemicals to produce monomers for new textiles or other materials, while biological recycling uses enzymes and microorganisms for this purpose instead of chemicals. Thermal recycling recovers energy and fuels from textile waste through pyrolysis, gasification and hydrothermal liquefaction. These innovations may have the drawbacks of high cost and scalability. This review contributes to decision making by synthesizing the strengths and weaknesses of the innovations in textile waste management.
ISSN:2673-7248