MICROSTRUCTURAL EVOLUTIONS AND MECHANICAL PROPERTIES DURING LONG-TERM AGEING OF TITANIUM ALLOY Ti-17

Microstructural evolutions and resulting mechanical properties have been investigated in the near-β Ti-17 alloy following long- term ageing heat-treatment up to 6000 h at 450 °C. The initial microstructure was bimodal lamellar, consisting of two populations of α grains (αlam-primary and αsecondary)...

Full description

Bibliographic Details
Main Authors: Maury Nicolas, Dehmas Moukrane, Archambeau-Mirguet Claude, Delfosse Jérôme, Aeby-Gautier Elisabeth
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:MATEC Web of Conferences
Subjects:
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2020/17/matecconf_ti2019_12004.pdf
Description
Summary:Microstructural evolutions and resulting mechanical properties have been investigated in the near-β Ti-17 alloy following long- term ageing heat-treatment up to 6000 h at 450 °C. The initial microstructure was bimodal lamellar, consisting of two populations of α grains (αlam-primary and αsecondary) in a β phase matrix. Two microstructures were obtained either via controlled heat- treatments from the β phase field - in order to generate significant differences in the grain fraction, size, density and spatial distribution - or sampled from a part submitted to an industrial processing route. High energy XRD reveals that whatever the initial microstructure, the amount of α phase increases significantly after 1000 h long-term ageing. Complementary SEM and image analysis characterizations enable to deduce that this evolution is the consequence of αsecondary growth and/or coarsening. Also, TEM observations and EDX analysis show that the Mo and Cr contents of the β phase increase and that α2 nano-precipitates form within the αlam-primary grains. Considering the mechanical properties, long-term ageing leads to an increase in the yield and ultimate tensile strength, as well as a decrease in the elongation at failure, at an extent which depends on the ageing time.
ISSN:2261-236X