Two-Dimensional Compact-Finite-Difference Schemes for Solving the bi-Laplacian Operator with Homogeneous Wall-Normal Derivatives

In fluid mechanics, the bi-Laplacian operator with Neumann homogeneous boundary conditions emerges when transforming the Navier–Stokes equations to the vorticity–velocity formulation. In the case of problems with a periodic direction, the problem can be transformed into multiple, independent, two-di...

Full description

Bibliographic Details
Main Authors: Jesús Amo-Navarro, Ricardo Vinuesa, J. Alberto Conejero, Sergio Hoyas
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/19/2508
Description
Summary:In fluid mechanics, the bi-Laplacian operator with Neumann homogeneous boundary conditions emerges when transforming the Navier–Stokes equations to the vorticity–velocity formulation. In the case of problems with a periodic direction, the problem can be transformed into multiple, independent, two-dimensional fourth-order elliptic problems. An efficient method to solve these two-dimensional bi-Laplacian operators with Neumann homogeneus boundary conditions was designed and validated using 2D compact finite difference schemes. The solution is formulated as a linear combination of auxiliary solutions, as many as the number of points on the boundary, a method that was prohibitive some years ago due to the large memory requirements to store all these auxiliary functions. The validation has been made for different field configurations, grid sizes, and stencils of the numerical scheme, showing its potential to tackle high gradient fields as those that can be found in turbulent flows.
ISSN:2227-7390