Reexamining low rank matrix factorization for trace norm regularization
Trace norm regularization is a widely used approach for learning low rank matrices. A standard optimization strategy is based on formulating the problem as one of low rank matrix factorization which, however, leads to a non-convex problem. In practice this approach works well, and it is often comput...
Huvudupphovsmän: | Carlo Ciliberto, Massimiliano Pontil, Dimitrios Stamos |
---|---|
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
AIMS Press
2023-08-01
|
Serie: | Mathematics in Engineering |
Ämnen: | |
Länkar: | https://www.aimspress.com/article/doi/10.3934/mine.2023053?viewType=HTML |
Liknande verk
-
Deep Fuzzy Clustering Network With Matrix Norm Regularization
av: Feiyu Chen, et al.
Publicerad: (2024-01-01) -
A Group Norm Regularized Factorization Model for Subspace Segmentation
av: Xishun Wang, et al.
Publicerad: (2020-01-01) -
Group Choice Using Matrix Norms
av: Y. N. Artamonov
Publicerad: (2016-12-01) -
Multi-task feature learning by using trace norm regularization
av: Jiangmei Zhang, et al.
Publicerad: (2017-11-01) -
Lower bounds for the low-rank matrix approximation
av: Jicheng Li, et al.
Publicerad: (2017-11-01)