Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis

The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte...

Full description

Bibliographic Details
Main Authors: Haruko Nakano, Itsunari Minami, Daniel Braas, Herman Pappoe, Xiuju Wu, Addelynn Sagadevan, Laurent Vergnes, Kai Fu, Marco Morselli, Christopher Dunham, Xueqin Ding, Adam Z Stieg, James K Gimzewski, Matteo Pellegrini, Peter M Clark, Karen Reue, Aldons J Lusis, Bernard Ribalet, Siavash K Kurdistani, Heather Christofk, Norio Nakatsuji, Atsushi Nakano
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2017-12-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/29330
_version_ 1811201277073293312
author Haruko Nakano
Itsunari Minami
Daniel Braas
Herman Pappoe
Xiuju Wu
Addelynn Sagadevan
Laurent Vergnes
Kai Fu
Marco Morselli
Christopher Dunham
Xueqin Ding
Adam Z Stieg
James K Gimzewski
Matteo Pellegrini
Peter M Clark
Karen Reue
Aldons J Lusis
Bernard Ribalet
Siavash K Kurdistani
Heather Christofk
Norio Nakatsuji
Atsushi Nakano
author_facet Haruko Nakano
Itsunari Minami
Daniel Braas
Herman Pappoe
Xiuju Wu
Addelynn Sagadevan
Laurent Vergnes
Kai Fu
Marco Morselli
Christopher Dunham
Xueqin Ding
Adam Z Stieg
James K Gimzewski
Matteo Pellegrini
Peter M Clark
Karen Reue
Aldons J Lusis
Bernard Ribalet
Siavash K Kurdistani
Heather Christofk
Norio Nakatsuji
Atsushi Nakano
author_sort Haruko Nakano
collection DOAJ
description The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleotide biosynthesis through the pentose phosphate pathway. Blood glucose level in embryos is stable in utero during normal pregnancy, but glucose uptake by fetal cardiac tissue is drastically reduced in late gestational stages. In a murine model of diabetic pregnancy, fetal hearts showed cardiomyopathy with increased mitotic activity and decreased maturity. These data suggest that high glucose suppresses cardiac maturation, providing a possible mechanistic basis for congenital heart disease in diabetic pregnancy.
first_indexed 2024-04-12T02:19:23Z
format Article
id doaj.art-c9808df6756440af9e5145aa0bbabc25
institution Directory Open Access Journal
issn 2050-084X
language English
last_indexed 2024-04-12T02:19:23Z
publishDate 2017-12-01
publisher eLife Sciences Publications Ltd
record_format Article
series eLife
spelling doaj.art-c9808df6756440af9e5145aa0bbabc252022-12-22T03:52:11ZengeLife Sciences Publications LtdeLife2050-084X2017-12-01610.7554/eLife.29330Glucose inhibits cardiac muscle maturation through nucleotide biosynthesisHaruko Nakano0https://orcid.org/0000-0001-5807-9127Itsunari Minami1Daniel Braas2Herman Pappoe3Xiuju Wu4Addelynn Sagadevan5Laurent Vergnes6Kai Fu7Marco Morselli8Christopher Dunham9Xueqin Ding10Adam Z Stieg11https://orcid.org/0000-0001-7312-9364James K Gimzewski12Matteo Pellegrini13https://orcid.org/0000-0001-9355-9564Peter M Clark14Karen Reue15Aldons J Lusis16Bernard Ribalet17Siavash K Kurdistani18Heather Christofk19Norio Nakatsuji20Atsushi Nakano21https://orcid.org/0000-0001-5702-5039Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United StatesInstitute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, JapanDepartment of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United StatesDepartment of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United StatesDivision of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, United StatesDepartment of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United StatesDepartment of Human Genetics, University of California, Los Angeles, Los Angeles, United StatesDepartment of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United StatesDepartment of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United StatesDepartment of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United StatesDepartment of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United StatesCalifornia NanoSystems Institute, University of California, Los Angeles, Los Angeles, United States; WPI Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Meguro, JapanDepartment of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, United States; WPI Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Meguro, Japan; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, United StatesDepartment of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United States; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United StatesDepartment of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, United States; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, United StatesDepartment of Human Genetics, University of California, Los Angeles, Los Angeles, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United StatesDivision of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, United States; Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, United StatesDepartment of Physiology, University of California, Los Angeles, Los Angeles, United StatesJonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, United StatesDepartment of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, United StatesInstitute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan; Institute for Life and Frontier Medical Sciences, Kyoto University, Kyoto, JapanDepartment of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United States; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, United StatesThe heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleotide biosynthesis through the pentose phosphate pathway. Blood glucose level in embryos is stable in utero during normal pregnancy, but glucose uptake by fetal cardiac tissue is drastically reduced in late gestational stages. In a murine model of diabetic pregnancy, fetal hearts showed cardiomyopathy with increased mitotic activity and decreased maturity. These data suggest that high glucose suppresses cardiac maturation, providing a possible mechanistic basis for congenital heart disease in diabetic pregnancy.https://elifesciences.org/articles/29330human pluripotent stem celldiabetescardiac
spellingShingle Haruko Nakano
Itsunari Minami
Daniel Braas
Herman Pappoe
Xiuju Wu
Addelynn Sagadevan
Laurent Vergnes
Kai Fu
Marco Morselli
Christopher Dunham
Xueqin Ding
Adam Z Stieg
James K Gimzewski
Matteo Pellegrini
Peter M Clark
Karen Reue
Aldons J Lusis
Bernard Ribalet
Siavash K Kurdistani
Heather Christofk
Norio Nakatsuji
Atsushi Nakano
Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis
eLife
human pluripotent stem cell
diabetes
cardiac
title Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis
title_full Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis
title_fullStr Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis
title_full_unstemmed Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis
title_short Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis
title_sort glucose inhibits cardiac muscle maturation through nucleotide biosynthesis
topic human pluripotent stem cell
diabetes
cardiac
url https://elifesciences.org/articles/29330
work_keys_str_mv AT harukonakano glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT itsunariminami glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT danielbraas glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT hermanpappoe glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT xiujuwu glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT addelynnsagadevan glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT laurentvergnes glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT kaifu glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT marcomorselli glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT christopherdunham glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT xueqinding glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT adamzstieg glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT jameskgimzewski glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT matteopellegrini glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT petermclark glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT karenreue glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT aldonsjlusis glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT bernardribalet glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT siavashkkurdistani glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT heatherchristofk glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT norionakatsuji glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis
AT atsushinakano glucoseinhibitscardiacmusclematurationthroughnucleotidebiosynthesis