Numerical study of a nonlinear fractional chaotic Chua's circuit

As an exponentially growing sensitivity to modest perturbations, chaos is pervasive in nature. Chaos is expected to provide a variety of functional purposes in both technological and biological systems. This work applies the time-fractional Caputo and Caputo-Fabrizio fractional derivatives to the Ch...

Full description

Bibliographic Details
Main Authors: Nehad Ali Shah, Iftikhar Ahmed, Kanayo K. Asogwa, Azhar Ali Zafar, Wajaree Weera, Ali Akgül
Format: Article
Language:English
Published: AIMS Press 2023-01-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2023083?viewType=HTML
Description
Summary:As an exponentially growing sensitivity to modest perturbations, chaos is pervasive in nature. Chaos is expected to provide a variety of functional purposes in both technological and biological systems. This work applies the time-fractional Caputo and Caputo-Fabrizio fractional derivatives to the Chua type nonlinear chaotic systems. A numerical analysis of the mathematical models is used to compare the chaotic behavior of systems with differential operators of integer order versus systems with fractional differential operators. Even though the chaotic behavior of the classical Chua's circuit has been extensively investigated, our generalization can highlight new aspects of system behavior and the effects of memory on the evolution of the chaotic generalized circuit.
ISSN:2473-6988