Core and penumbra estimation using deep learning-based AIF in association with clinical measures in computed tomography perfusion (CTP)

Abstract Objectives To investigate whether utilizing a convolutional neural network (CNN)-based arterial input function (AIF) improves the volumetric estimation of core and penumbra in association with clinical measures in stroke patients. Methods The study included 160 acute ischemic stroke patient...

Full description

Bibliographic Details
Main Authors: Sukhdeep Singh Bal, Fan-pei Gloria Yang, Nai-Fang Chi, Jiu Haw Yin, Tao-Jung Wang, Giia Sheun Peng, Ke Chen, Ching-Chi Hsu, Chang-I Chen
Format: Article
Language:English
Published: SpringerOpen 2023-09-01
Series:Insights into Imaging
Subjects:
Online Access:https://doi.org/10.1186/s13244-023-01472-z
Description
Summary:Abstract Objectives To investigate whether utilizing a convolutional neural network (CNN)-based arterial input function (AIF) improves the volumetric estimation of core and penumbra in association with clinical measures in stroke patients. Methods The study included 160 acute ischemic stroke patients (male = 87, female = 73, median age = 73 years) with approval from the institutional review board. The patients had undergone CTP imaging, NIHSS and ASPECTS grading. convolutional neural network (CNN) model was trained to fit a raw AIF curve to a gamma variate function. CNN AIF was utilized to estimate the core and penumbra volumes which were further validated with clinical scores. Results Penumbra estimated by CNN AIF correlated positively with the NIHSS score (r = 0.69; p < 0.001) and negatively with the ASPECTS (r =  − 0.43; p < 0.001). The CNN AIF estimated penumbra and core volume matching the patient symptoms, typically in patients with higher NIHSS (> 20) and lower ASPECT score (< 5). In group analysis, the median CBF < 20%, CBF < 30%, rCBF < 38%, Tmax > 10 s, Tmax > 10 s volumes were statistically significantly higher (p < .05). Conclusions With inclusion of the CNN AIF in perfusion imaging pipeline, penumbra and core estimations are more reliable as they correlate with scores representing neurological deficits in stroke. Critical relevance statement With CNN AIF perfusion imaging pipeline, penumbra and core estimations are more reliable as they correlate with scores representing neurological deficits in stroke. Graphic abstract
ISSN:1869-4101